Unconjugated
Glutamate carboxypeptidase II (GCPII) is a membrane peptidase expressed in the prostate, central and peripheral nervous system, kidney, small intestine, and tumor-associated neovasculature. The GCPII form expressed in the central nervous system, termed NAALADase, is responsible for the cleavage of N-acetyl-L-aspartyl-L-glutamate (NAAG) yielding free glutamate in the synaptic cleft, and is implicated in various pathologic conditions associated with glutamate excitotoxicity. The prostate form of GCPII, termed prostate-specific membrane antigen (PSMA), is up-regulated in cancer and used as an effective prostate cancer marker. Little is known about the structure of this important pharmaceutical target. As a type II membrane protein, GCPII is heavily glycosylated. In this paper we show that N-glycosylation is vital for proper folding and subsequent secretion of human GCPII. Analysis of the predicted N-glycosylation sites also provides evidence that these sites are critical for GCPII carboxypeptidase activity. We confirm that all predicted N-glycosylation sites are occupied by an oligosaccharide moiety and show that glycosylation at sites distant from the putative catalytic domain is critical for the NAAG-hydrolyzing activity of GCPII calling the validity of previously described structural models of GCPII into question.
Glutamate carboxypeptidase II (GCPII) is a transmembrane glycoprotein expressed in various tissues. When expressed in the brain it cleaves the neurotransmitter N-acetylaspartylglutamate (NAAG), yielding free glutamate. In jejunum it hydrolyzes folylpoly-gamma-glutamate, thus facilitating folate absorption. The prostate form of GCPII, known as prostate specific membrane antigen (PSMA), is an established cancer marker. The NAAG-hydrolyzing activity of GCPII has been implicated in a number of pathological conditions in which glutamate is neurotoxic (e.g. amyotrophic lateral sclerosis, Huntington's disease, Alzheimer's disease, epilepsy, schizophrenia, and stroke). Inhibition of GCPII was shown to be neuroprotective in tissue culture and in animal models. GCPII is therefore an interesting putative therapeutic target. However, only very limited and controversial data on the expression and localization of GCPII in human brain are available. Therefore, we set out to analyze the activity and expression of GCPII in various compartments of the human brain using a radiolabeled substrate of the enzyme and the novel monoclonal antibody GCP-04, which recognizes an epitope on the extracellular portion of the enzyme and is more sensitive to GCPII than to the homologous GCPIII. We show that this antibody is more sensitive in immunoblots than the widely used antibody 7E11. By Western blot, we show that there are approximately 50-300 ng of GCPII/mg of total protein in human brain, depending on the specific area. Immunohistochemical analysis revealed that astrocytes specifically express GCPII in all parts of the brain. GCPII is enzymatically active and the level of activity follows the expression pattern. Using pure recombinant GCPII and homologous GCPIII, we conclude that GCPII is responsible for the majority of overall NAAG-hydrolyzing activity in the human brain.