Unconjugated
Epithelial-mesenchymal transition (EMT) is a key process in tumor metastatic cascade that is characterized by the loss of cell-cell junctions and cell polarity, resulting in the acquisition of migratory and invasive properties. However, the precise molecular events that initiate this complex EMT process in head and neck cancers are poorly understood. Increasing evidence suggests that tumor microenvironment plays an important role in promoting EMT in tumor cells. We have previously shown that head and neck tumors exhibit significantly higher Bcl-2 expression in tumor-associated endothelial cells and overexpression of Bcl-2 alone in tumor-associated endothelial cells was sufficient to enhance tumor metastasis of oral squamous cell carcinoma in a severe combined immunodeficient (SCID) mouse model. In this study, we show that endothelial cells expressing Bcl-2 (EC-Bcl-2), when cocultured with head and neck tumor cells (CAL27), significantly enhance EMT-related changes in tumor cells predominantly by the secretion of IL-6. Treatment with recombinant IL-6 or stable IL-6 overexpression in CAL27 cells or immortalized oral epithelial cells (IOE) significantly induced the expression of mesenchymal marker, vimentin, while repressing E-cadherin expression via the JAK/STAT3/Snail signaling pathway. These EMT-related changes were further associated with enhanced tumor and IOE cell scattering and motility. STAT3 knockdown significantly reversed IL-6-mediated tumor and IOE cell motility by inhibiting FAK activation. Furthermore, tumor cells overexpressing IL-6 showed marked increase in lymph node and lung metastasis in a SCID mouse xenograft model. Taken together, these results show a novel function for IL-6 in mediating EMT in head and neck tumor cells and increasing their metastatic potential.
Biliary atresia is an obstructive cholangiopathy of infancy that progresses to end-stage cirrhosis. Although the pathogenesis of the disease is not completely understood, previous reports link TNFa to apoptosis of the bile duct epithelium in the presence of IFN?. Here, we investigate if TNFa signaling regulates pathogenic mechanisms of biliary atresia. First, we quantified the expression of TNFA and its receptors TNFR1 and TNFR2 in human livers and found an increased expression of the receptors at the time of diagnosis. In mechanistic experiments using a neonatal mouse model of rhesus rotavirus-induced (RRV-induced) biliary atresia, the expression of the ligand and both receptors increased 6- to 8-fold in hepatic DCs and NK lymphocytes above controls. The activation of tissue NK cells by RRV-primed DCs was independent of TNFa-TNFR signaling. Once activated, the expression of TNFa by NK cells induced lysis of 55% ± 2% of bile duct epithelial cells, which was completely prevented by blocking TNFa or TNFR2, but not TNFR1. More notably, antibody-mediated or genetic disruption of TNFa-TNFR2 signaling in vivo decreased apoptosis and epithelial injury; suppressed the infiltration of livers by T cells, DCs, and NK cells; prevented extrahepatic bile duct obstruction; and promoted long-term survival. These findings point to a key role for the TNFa/TNFR2 axis on pathogenesis of experimental biliary atresia and identify new therapeutic targets to suppress the disease phenotype.
Here, we identified release of extracellular vesicles (EVs) by the choroid plexus epithelium (CPE) as a new mechanism of blood-brain communication. Systemic inflammation induced an increase in EVs and associated pro-inflammatory miRNAs, including miR-146a and miR-155, in the CSF Interestingly, this was associated with an increase in amount of multivesicular bodies (MVBs) and exosomes per MVB in the CPE cells. Additionally, we could mimic this using LPS-stimulated primary CPE cells and choroid plexus explants. These choroid plexus-derived EVs can enter the brain parenchyma and are taken up by astrocytes and microglia, inducing miRNA target repression and inflammatory gene up-regulation. Interestingly, this could be blocked in vivo by intracerebroventricular (icv) injection of an inhibitor of exosome production. Our data show that CPE cells sense and transmit information about the peripheral inflammatory status to the central nervous system (CNS) via the release of EVs into the CSF, which transfer this pro-inflammatory message to recipient brain cells. Additionally, we revealed that blockage of EV secretion decreases brain inflammation, which opens up new avenues to treat systemic inflammatory diseases such as sepsis.
© 2016 The Authors. Published under the terms of the CC BY 4.0 license.
Current screening methods for ovarian cancer can only detect advanced disease. Earlier detection has proved difficult because the molecular precursors involved in the natural history of the disease are unknown. To identify early driver mutations in ovarian cancer cells, we used dense whole genome sequencing of micrometastases and microscopic residual disease collected at three time points over three years from a single patient during treatment for high-grade serous ovarian cancer (HGSOC). The functional and clinical significance of the identified mutations was examined using a combination of population-based whole genome sequencing, targeted deep sequencing, multi-center analysis of protein expression, loss of function experiments in an in-vivo reporter assay and mammalian models, and gain of function experiments in primary cultured fallopian tube epithelial (FTE) cells. We identified frequent mutations involving a 40kb distal repressor region for the key stem cell differentiation gene SOX2. In the apparently normal FTE, the region was also mutated. This was associated with a profound increase in SOX2 expression (p<2(-16)), which was not found in patients without cancer (n=108). Importantly, we show that SOX2 overexpression in FTE is nearly ubiquitous in patients with HGSOCs (n=100), and common in BRCA1-BRCA2 mutation carriers (n=71) who underwent prophylactic salpingo-oophorectomy. We propose that the finding of SOX2 overexpression in FTE could be exploited to develop biomarkers for detecting disease at a premalignant stage, which would reduce mortality from this devastating disease.
Copyright © 2016 The Ohio State University Wexner Medical Center. Published by Elsevier B.V. All rights reserved.
OBJECTIVE Hypoxia induces angiogenesis and plays a major role in the progression of carotid plaques. During carotid intervention, plaques with high-intensity signals on time-of-flight (TOF) magnetic resonance angiography (MRA) often cause ischemic stroke and embolic complications. However, the role of intraplaque hypoxia before carotid endarterectomy (CEA) and carotid artery stenting is not presently understood. In this study the authors aimed to investigate the relationship between intraplaque hypoxia and MRA findings. METHODS Nineteen consecutive patients with 20 carotid artery stenoses who underwent CEA at Saga University Hospital between August 2008 and December 2014 were enrolled in the study. The expressions of hypoxia-inducible transcription factor-1a (HIF-1a) and vascular endothelial growth factor (VEGF) were analyzed by immunohistochemical analysis. In addition, the relationship between the findings on TOF MRA and pathology for the carotid plaques was analyzed. RESULTS High-intensity plaques on TOF MRA showed higher expression levels of HIF-1a (p = 0.015) and VEGF (p = 0.007) compared with isointensity plaques. The rate of intraplaque hemorrhage (IPH) on TOF MRA was also significantly higher in the high-intensity plaques than in the isointensity plaques (p = 0.024). Finally, the mean number of neovessels was significantly higher in those without plaque hemorrhage than in those with plaque hemorrhage (p = 0.010). CONCLUSIONS Plaques with high-intensity signals on TOF MRA were associated with IPH and evidence of intraplaque hypoxia. This fact may represent an opportunity to establish novel therapeutic agents targeting intraplaque hypoxia.
Pannexin1 (Panx1) subunits oligomerize to form large-pore channels between the intracellular and extracellular milieu that have been shown to regulate proliferation, differentiation and cell death mechanisms. These key cellular responses are ultimately necessary for normal tissue development and function but the role of Panx1 in development, differentiation and function in many tissues remains unexplored, including that of the breast. Panx1 was identified to be expressed in the mammary gland through western blot and immunofluorescent analysis and is dynamically upregulated during pregnancy and lactation. In order to evaluate the role of Panx1 in the context of mammary gland development and function, Panx1-/- mice were evaluated in comparison to wild-type mice in the mammary glands of virgin, lactating and involuting mice. Our results revealed that Panx1 ablation did not affect virgin or involuting mammary glands following histological and whole mount analysis. Panx1 was necessary for timely alveolar development during early lactation based on a decreased number of alveolar lumen following histological analysis and reduced proliferation following Ki67 immunofluorescent labelling. Importantly, the loss of Panx1 in lactating mammary glands did not overtly affect epithelial or secretory differentiation of the mammary gland suggesting that Panx1 is not critical in normal mammary gland function. In addition, PANX1 mRNA expression was correlated with negative clinical outcomes in patients with breast cancer using in silico arrays. Together, our results suggest that Panx1 is necessary for timely alveolar development following the transition from pregnancy to lactation, which may have implications extending to patients with breast cancer.
Lung epithelial cells play critical roles in initiating and modulating immune responses during pulmonary infection or injury. To better understand the spectrum of immune response-related proteins present in lung epithelial cells, we developed an improved method of isolating highly pure primary murine alveolar type (AT) II cells and murine tracheal epithelial cells (mTECs) using negative selection for a variety of lineage markers and positive selection for epithelial cell adhesion molecule (EpCAM), a pan-epithelial cell marker. This method yielded 2-3?×?10(6) ATII cells/mouse lung and 1-2?×?10(4) mTECs/trachea that were highly pure (>98%) and viable (>98%). Using these preparations, we found that both ATII cells and mTECs expressed the Lyn tyrosine kinase, which is best studied as an inhibitory kinase in hematopoietic cells. However, we found little or no expression of Syk in either ATII cells or mTECs, which is in contrast to earlier published reports. Both cell types expressed C-type lectin receptors, anaphylatoxin receptors, and various Toll-like receptors (TLRs). In addition, stimulation of ATII cells with TLR ligands led to secretion of various cytokines and chemokines. Interestingly, lyn(-/-) ATII cells were hyperresponsive to TLR3 stimulation, suggesting that, as in hematopoietic cells, Lyn might be playing an inhibitory role in ATII cells. In conclusion, the improved isolation method reported here, along with expression profiles of various immune defense proteins, will help refocus investigations of immune-related signaling events in pulmonary epithelium.
The pathophysiology of esophageal injury, repair, and inflammation in gastroesophageal reflux-disease (GERD) is complex. Whereas most studies have focused on the epithelial response to GERD injury, we are interested in the stromal response. We hypothesized that subepithelial esophageal myofibroblasts in GERD secrete proinflammatory cytokines in response to injurious agents encountered via epithelial barrier breaches or through dilated epithelial intercellular spaces. We determined the percentage of myofibroblasts [-smooth muscle actin (-SMA)+vimentin+CD31-] in the subepithelial GERD and normal esophageal stroma by immunomorphologic analysis. We performed -SMA coimmunostaining with IL-6 and p65. We established and characterized primary cultures of -SMA+vimentin+CD31-CD45- human esophageal myofibroblasts (HuEso MFs). We modeled GERD by treatment with pH 4.5-acidified media and Toll-like receptor 4 (TLR4) ligands, LPS and high-mobility group box 1 protein (HMGB1), and determined myofibroblast cytokine secretion in response to GERD injury. We demonstrate that spindle-shaped cell myofibroblasts are located near the basement membrane of stratified squamous epithelium in normal esophagus. We identify an increase in subepithelial myofibroblasts and activation of proinflammatory pathways in patients with GERD. Primary cultures of stromal cells obtained from normal esophagus retain myofibroblast morphology and express the acid receptor transient receptor potential channel vanilloid subfamily 1 (TRPV1) and TLR4. HuEso MFs stimulated with acid and TLR4 agonists LPS and HMGB1 increase IL-6 and IL-8 secretion via TRPV1 and NF-B activation. Our work implicates a role for human subepithelial stromal cells in the pathogenesis of GERD-related esophageal injury. Findings of this study can be extended to the investigation of epithelial-stromal interactions in inflammatory esophageal mucosal disorders.
Cell surface proteins have a wide range of biological functions, and are often used as lineage-specific markers. Antibodies that recognize cell surface antigens are widely used as research tools, diagnostic markers, and even therapeutic agents. The ability to obtain broad cell surface protein profiles would thus be of great value in a wide range of fields. There are however currently few available methods for high-throughput analysis of large numbers of cell surface proteins. We describe here a high-throughput flow cytometry (HT-FC) platform for rapid analysis of 363 cell surface antigens. Here we demonstrate that HT-FC provides reproducible results, and use the platform to identify cell surface antigens that are influenced by common cell preparation methods. We show that multiple populations within complex samples such as primary tumors can be simultaneously analyzed by co-staining of cells with lineage-specific antibodies, allowing unprecedented depth of analysis of heterogeneous cell populations. Furthermore, standard informatics methods can be used to visualize, cluster and downsample HT-FC data to reveal novel signatures and biomarkers. We show that the cell surface profile provides sufficient molecular information to classify samples from different cancers and tissue types into biologically relevant clusters using unsupervised hierarchical clustering. Finally, we describe the identification of a candidate lineage marker and its subsequent validation. In summary, HT-FC combines the advantages of a high-throughput screen with a detection method that is sensitive, quantitative, highly reproducible, and allows in-depth analysis of heterogeneous samples. The use of commercially available antibodies means that high quality reagents are immediately available for follow-up studies. HT-FC has a wide range of applications, including biomarker discovery, molecular classification of cancers, or identification of novel lineage specific or stem cell markers.
Signaling through platelet-derived growth factor receptor-a (PDGFRa) is required for alveolar septation and participates in alveolar regeneration after pneumonectomy. In both adipose tissue and skeletal muscle, bipotent pdgfra-expressing progenitors expressing delta-like ligand-1 or sex-determining region Y box 9 (Sox9) may differentiate into either lipid storage cells or myofibroblasts. We analyzed markers of mesenchymal progenitors and differentiation in lung fibroblasts (LF) with different levels (absent, low, or high) of pdgfra gene expression. A larger proportion of pdgfra-expressing than nonexpressing LF contained Sox9. Neutral lipids, CD166, and Tcf21 were more abundant in LF with a lower compared with a higher level of pdgfra gene expression. PDGF-A increased Sox9 in primary LF cultures, suggesting that active signaling through PDGFRa is required to maintain Sox9. As alveolar septation progresses from postnatal day (P) 8 to P12, fewer pdgfra-expressing LF contain Sox9, whereas more of these LF contain myocardin-like transcription factor-A, showing that Sox9 diminishes as LF become myofibroblasts. At P8, neutral lipid droplets predominate in LF with the lower level of pdgfra gene expression, whereas transgelin (tagln) was predominantly expressed in LF with higher pdgfra gene expression. Targeted deletion of pdgfra in LF, which expressed tagln, reduced Sox9 in a-actin (a-SMA, ACTA2)-containing LF, whereas it increased the abundance of cell surface delta-like protein-1 (as well as peroxisome proliferator-activated receptor-? and tcf21 mRNA in LF, which also expressed stem cell antigen-1). Thus pdgfra deletion differentially alters delta-like protein-1 and Sox9, suggesting that targeting different downstream pathways in PDGF-A-responsive LF could identify strategies that promote lung regeneration without initiating fibrosis.
Connexin26 (Cx26) is the major Cx protein expressed in the human mammary gland and is up-regulated during pregnancy while remaining elevated throughout lactation. It is currently unknown if patients with loss-of-function Cx26 mutations that result in hearing loss and skin diseases have a greater susceptibility to impaired breast development. To investigate if Cx26 plays a critical role in mammary gland development and differentiation, a novel Cx26 conditional knockout mouse model was generated by crossing Cx26fl/fl mice with mice expressing Cre under the ß-Lactoglobulin promoter. Conditional knockdown of Cx26 from the mammary gland resulted in a dramatic reduction in detectable gap junction plaques confirmed by a significant ~65-70% reduction in Cx26 mRNA and protein throughout parturition and lactation. Interestingly, this reduction was accompanied by a decrease in mammary gland Cx30 gap junction plaques at parturition, while no change was observed for Cx32 or Cx43. Whole mount, histological and immunofluorescent assessment of breast tissue revealed comparatively normal lobuloalveolar development following pregnancy in the conditionally knockdown mice compared to control mice. In addition, glands from genetically-modified mice were capable of producing milk proteins that were evident in the lumen of alveoli and ducts at similar levels as controls, suggesting normal gland function. Together, our results suggest that low levels of Cx26 expression throughout pregnancy and lactation, and not the physiological surge in Cx26, is sufficient for normal gland development and function.
Bats have been increasingly recognized as reservoir of important zoonotic viruses. However, until now many attempts to isolate bat-borne viruses in cell culture have been unsuccessful. Further, experimental studies on reservoir host species have been limited by the difficulty of rearing these species. The epithelium of the respiratory tract plays a central role during airborne transmission, as it is the first tissue encountered by viral particles. Although several cell lines from bats were established recently, no well-characterized, selectively cultured airway epithelial cells were available so far. Here, primary cells and immortalized cell lines from bats of the two important suborders Yangochiroptera and Yinpterochiroptera, Carollia perspicillata (Seba's short-tailed bat) and Eidolon helvum (Straw-colored fruit bat), were successfully cultured under standardized conditions from both fresh and frozen organ specimens by cell outgrowth of organ explants and by the use of serum-free primary cell culture medium. Cells were immortalized to generate permanent cell lines. Cells were characterized for their epithelial properties such as expression of cytokeratin and tight junctions proteins and permissiveness for viral infection with Rift-Valley fever virus and vesicular stomatitis virus Indiana. These cells can serve as suitable models for the study of bat-borne viruses and complement cell culture models for virus infection in human airway epithelial cells.
Glomerulonephritis is characterized by the proliferation and apoptosis of mesangial cells (MC). The parathyroid-hormone related protein (PTHrP) is a locally active cytokine that affects these phenomena in many cell types, through either paracrine or intracrine pathways. The aim of this study was to evaluate the effect of both PTHrP pathways on MC proliferation and apoptosis. In vitro studies were based on MC from male transgenic mice allowing PTHrP-gene excision by a CreLoxP system. MC were also transfected with different PTHrP constructs: wild type PTHrP, PTHrP devoid of its signal peptide, or of its nuclear localization sequence. The results showed that PTHrP deletion in MC reduced their proliferation even in the presence of serum and increased their apoptosis when serum-deprived. PTH1R activation by PTHrP(1-36) or PTH(1-34) had no effect on proliferation but improved MC survival. Transfection of MC with PTHrP devoid of its signal peptide significantly increased their proliferation and minimally reduced their apoptosis. Overexpression of PTHrP devoid of its nuclear localization sequence protected cells from apoptosis without changing their proliferation. Wild type PTHrP transfection conferred both mitogenic and survival effects, which seem independent of midregion and C-terminal PTHrP fragments. PTHrP-induced MC proliferation was associated with p27(Kip1) down-regulation and c-Myc/E2F1 up-regulation. PTHrP increased MC survival through the activation of cAMP/protein kinase A and PI3-K/Akt pathways. These results reveal that PTHrP is a cytokine of multiple roles in MC, acting as a mitogenic factor only through an intracrine pathway, and reducing apoptosis mainly through the paracrine pathway. Thus, PTHrP appears as a probable actor in MC injuries.
Cervical dysfunction contributes to a significant number of preterm births and is a common cause of morbidity and mortality in newborn infants. Cervical dysfunction is related to weakened load bearing properties of the collagen-rich cervical stroma. However, the mechanisms responsible for cervical collagen changes during pregnancy are not well defined. It is known that blood flow and oxygen tension significantly increase in reproductive tissues during pregnancy. To examine the effect of oxygen tension, a key mediator of tissue homeostasis, on the formation of cervical-like tissue in vitro, we grew primary human cervical cells in both two-dimensional (2D) and three-dimensional (3D) culture systems at 5% and 20% oxygen. Immunofluorescence studies revealed a stable fibroblast phenotype across six passages in all subjects studied (n=5). In 2D culture for 2 weeks, 20% oxygen was associated with significantly increased collagen gene expression (p<0.01), increased tissue wet weight (p<0.01), and increased collagen concentration (p=0.046). 3D cultures could be followed for significantly longer time frames than 2D cultures (12 weeks vs. 2 weeks). In contrast to 2D cultures, 20% oxygen in 3D cultures was associated with decreased collagen concentration (p<0.01) and unchanged collagen gene expression, which is similar to cervical collagen changes seen during pregnancy. We infer that 3D culture is more relevant for studying cervical collagen changes in vitro. The data suggest that increased oxygen tension may be related to significant cervical collagen changes seen in pregnancy.
Aminoflavone (AF) is an anticancer drug in early clinical trials, and its antiproliferative activity involves the induction of DNA-protein cross-links. To identify the proteins cross-linked to nucleic acids, cesium chloride (CsCl) gradient centrifugation was used to isolate proteins tightly bound to nucleic acids in AF-treated human breast carcinoma MCF-7 cells. The identified proteins included structural proteins (several cytokeratins), transcription regulators, and stress response proteins. The identification of the cytokeratins was validated using direct immunoblotting of the high-density CsCl (nucleic acid) fractions isolated from AF-treated cells. Ribonuclease A pretreatment caused the cytokeratin signal in the heaviest CsCl fractions to disappear, suggesting that AF mediates RNA-cytokeratin cross-links. Additional experiments using radiolabeled AF showed that AF formed adducts with total RNA and mRNA with similar affinity to that of DNA. Moreover, 18S RNA was selectively pulled down using an anti-cytokeratin antibody after AF treatment. Consistent with the formation of these adducts, we found that AF inhibits RNA and protein synthesis in a dose- and time-dependent manner. This study provides evidence for the formation of AF-mediated cytokeratin-RNA cross-links and the presence of cytokeratin-RNA complexes. Thus, in addition to its anticancer activity, AF might be a useful molecular probe to study the potential role of cytokeratins in the subcellular localization and metabolism of RNA.
Proliferation of bronchial epithelial cells is an important biological process in physiological conditions and various lung diseases. The objective of this study was to determine how bronchial fibroblasts influence bronchial epithelial cell proliferation. The proliferative activity in cocultures was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and direct cells counts. Concentration of cytokines was measured in cell culture supernatants by means of ELISA. In primary cell cocultures, fibroblasts or fibroblast-conditioned medium enhanced 1.85-fold the proliferation of primary bronchial epithelial cells (P < 0.02) compared with bronchial epithelial cells cultured alone. The proliferative activity in cocultures and in fibroblast-conditioned medium was reduced by neutralizing antibody to hepatocyte growth factor (HGF) and HGF receptor c-met. Neutralizing antibodies to FGF-7 and IGF-1 had no effect. Treatment of fibroblast-epithelial cocultures with anti-IL-6 and anti-TNF-alpha neutralizing antibodies and with indomethacin decreased production of HGF. These results indicate that cytokines and PGE(2) may indirectly mediate epithelial cell proliferation via the regulation of HGF in bronchial stromal cells and that HGF plays a crucial role in proinflammatory cytokine-induced proliferation in the experimental system studied.
Strains of uropathogenic Escherichia coli (UPEC) can invade terminally differentiated superficial bladder epithelial cells and subsequently multiply, forming large biofilm-like inclusions referred to as pods. In contrast, within immature bladder cells UPEC enter a more quiescent state and often fail to replicate appreciably. As immature bladder epithelial cells undergo terminal differentiation the actin cytoskeleton is radically diminished, a phenomenon that we reasoned could influence the intracellular fate of UPEC. Here we show that UPEC within undifferentiated bladder cells is trafficked into acidic compartments having key features of late endosomes and lysosomes. These UPEC-containing vacuoles are often enmeshed within a network of actin filaments, the disruption of which stimulates intravacuolar growth and efflux of UPEC in cell culture-based studies. In this in vitro model system, release of UPEC into the host cytosol further stimulates intracellular bacterial growth and the rapid development of pod-like inclusions. These inclusions, as well as those observed using an in vivo mouse model, develop in association with cytokeratin intermediate filaments that may act as scaffolding for intracellular biofilm formation. Our data suggest an aetiological basis for recurrent urinary tract infections, linking bladder cell differentiation and the accompanying redistribution of actin microfilaments with the resurgence of UPEC from quiescent intravacuolar reservoirs within the bladder epithelium.
EMX2 is a transcription factor necessary for reproductive tract development. Sex steroids regulate endometrial HOXA10 expression, which in turn negatively regulates EMX2. In this study, we characterize menstrual cycle-dependent expression of EMX2 in endometrium from women with and without endometriosis. In the absence of endometriosis, EMX2 mRNA levels declined 50% in periimplantation endometrium compared with levels in the proliferative phase. To determine whether the decrease in endometrial EMX2 expression was regulated by endogenous endometrial HOXA10, primary endometrial stromal cells were transfected with an EMX2-reporter construct containing a HOXA10 binding site. Acting via this site, we observed HOXA10-mediated repression of reporter expression. In the endometrium of patients with endometriosis, unlike normal endometrium, EMX2 levels were not decreased in the periimplantation period. We have previously shown that up-regulation of HOXA10 in periimplantation endometrium fails to occur in women with endometriosis. To determine whether elevated endometrial EMX2 levels were due to failure of HOXA10-mediated transcriptional repression, secondary to low HOXA10 levels in endometriosis, we transfected stromal cells with HOXA10 antisense and an EMX2-reporter construct. Reporter expression was increased, indicating reversal of HOXA10-mediated transcriptional repression. Endometrial EMX2 expression is aberrant in women with endometriosis and is mediated by altered HOXA10 expression.
A panel of 17 monoclonal antibodies (MAbs) recognizing various keratin polypeptides has been used to define their binding on non-epithelial elements in 28 bone-marrow samples and 14 lymph nodes, in order to establish their limitations for use as a possible tool for immunodiagnosis of carcinoma spread. Immunocytochemical studies have shown that only 8 antibodies consistently exhibited no false-positive staining of marrow cells. All the remaining MAbs labelled (mostly in a non-specific manner) a few cells of marrow samples derived from patients with either haematological disorders or malignant lymphomas. Fine granules and droplet-like cytoplasmic inclusions were predominant patterns of positive reactions. Homogeneous cytoplasmic staining reminiscent of specific keratin immunolabelling was occasionally seen as well. The positive cells could be also identified in some lymph nodes free of tumour infiltration. All antibodies visualized cytoplasmic droplets in scattered cells of lymph nodes taken from a patient with non-Hodgkin lymphoma. This type of positivity was mostly associated with positive histochemical reactions for iron. Quite significant was the detection of fibrillar positivity in the extrafollicular reticular cells in all nodes examined. Such a specific type of staining was exclusively induced by antibodies directed against epitopes of keratin 8 and 18, whereas those MAbs recognizing keratin 7 and 19 always gave negative results. Our data indicate that caution is required when such MAbs, considered as markers of specific cell types, are being used as an immunodiagnostic tool to identify single carcinoma cells. A series of criteria, including morphological ones, must be utilized in order to obtain meaningful results.
A series of 14 new mouse monoclonal antibodies (MAbs) to keratins is described and the data suggesting their potential value in the differential diagnosis of human tumours are reported. The specificities of individual MAbs of the 'C-series' presented here range from monospecificity for keratin No. 7 (MAbs C-18, C-35, C-62, and C-68), keratin No. 8 (MAbs C-15, C-43, and C-15), and keratin No. 18 (MAbs C-04 and C-08) up to the broadly reacting 'pan-keratin' MAb C-11, with the target epitopes of the remaining four MAbs being shared by different pairs of keratin polypeptides. The results of the biochemical characterization of the MAbs, together with their immunohistochemical staining patterns on frozen as well as on paraffin sections of normal human tissues, suggest that they represent a significant contribution to the growing list of anti-keratin MAbs applicable in both research and routine diagnostic pathology. The immunohistochemical examination of a wide range of human neoplasms with the new MAbs not only confirmed their value in making distinctions between carcinomas, on the one hand, and lymphomas, and gliomas, on the other, but also verified the possibility of more subtle subdivisions within the group of adenocarcinomas and their metastases. Furthermore, the identification of small subsets of breast carcinomas with decreased levels or apparent loss of the keratin No. 7 polypeptide and some cases of stomach carcinoma with apparently induced expression of this keratin suggests that such 'exceptions' must be considered when using keratin spectra as one of the criteria in differential diagnosis.
BACKGROUND:
Expression of programmed-death ligand 1 (PD-L1) in non-small cell lung cancer (NSCLC) is typically evaluated through invasive biopsies; however, recent advances in the identification of circulating tumor cells (CTCs) may be a less invasive method to assay tumor cells for these purposes. These liquid biopsies rely on accurate identification of CTCs from the diverse populations in the blood, where some tumor cells share characteristics with normal blood cells. While many blood cells can be excluded by their high expression of CD45, neutrophils and other immature myeloid subsets have low to absent expression of CD45 and also express PD-L1. Furthermore, cytokeratin is typically used to identify CTCs, but neutrophils may stain non-specifically for intracellular antibodies, including cytokeratin, thus preventing accurate evaluation of PD-L1 expression on tumor cells. This holds even greater significance when evaluating PD-L1 in epithelial cell adhesion molecule (EpCAM) positive and EpCAM negative CTCs (as in epithelial-mesenchymal transition (EMT)).
METHODS:
To evaluate the impact of CTC misidentification on PD-L1 evaluation, we utilized CD11b to identify myeloid cells. CTCs were isolated from patients with metastatic NSCLC using EpCAM, MUC1 or Vimentin capture antibodies and exclusion-based sample preparation (ESP) technology.
RESULTS:
Large populations of CD11b+CD45lo cells were identified in buffy coats and stained non-specifically for intracellular antibodies including cytokeratin. The amount of CD11b+ cells misidentified as CTCs varied among patients; accounting for 33-100% of traditionally identified CTCs. Cells captured with vimentin had a higher frequency of CD11b+ cells at 41%, compared to 20% and 18% with MUC1 or EpCAM, respectively. Cells misidentified as CTCs ultimately skewed PD-L1 expression to varying degrees across patient samples.
CONCLUSIONS:
Interfering myeloid populations can be differentiated from true CTCs with additional staining criteria, thus improving the specificity of CTC identification and the accuracy of biomarker evaluation.
BACKGROUND:
Small mammals such as bats and rodents have been increasingly recognized as reservoirs of novel potentially zoonotic pathogens. However, few in vitro model systems to date allow assessment of zoonotic viruses in a relevant host context. The cotton rat (Sigmodon hispidus) is a New World rodent species that has a long-standing history as an experimental animal model due to its unique susceptibility to human viruses. Furthermore, wild cotton rats are associated with a large variety of known or potentially zoonotic pathogens.
METHODS:
A method for the isolation and culture of airway epithelial cell lines recently developed for bats was applied for the generation of rodent airway and renal epithelial cell lines from the cotton rat. Continuous cell lines were characterized for their epithelial properties as well as for their interferon competence. Susceptibility to members of zoonotic Bunya-, Rhabdo-, and Flaviviridae, in particular Rift Valley fever virus (RVFV), vesicular stomatitis virus (VSV), West Nile virus (WNV), and tick-borne encephalitis virus (TBEV) was tested. Furthermore, novel arthropod-derived viruses belonging to the families Bunya-, Rhabdo-, and Mesoniviridae were tested.
RESULTS:
We successfully established airway and kidney epithelial cell lines from the cotton rat, and characterized their epithelial properties. Cells were shown to be interferon-competent. Viral infection assays showed high-titre viral replication of RVFV, VSV, WNV, and TBEV, as well as production of infectious virus particles. No viral replication was observed for novel arthropod-derived members of the Bunya-, Rhabdo-, and Mesoniviridae families in these cell lines.
CONCLUSION:
In the current study, we showed that newly established cell lines from the cotton rat can serve as host-specific in vitro models for viral infection experiments. These cell lines may also serve as novel tools for virus isolation, as well as for the investigation of virus-host interactions in a relevant host species.
BACKGROUND:
Numerous dressings for split-thickness skin graft donor sites are commercially available with no conclusive evidence-based consensus regarding the optimal dressing choice. This study was conducted to identify which of 5 commonly used materials promotes wound healing most effectively for use on split-thickness donor sites in comparison with our standard dressing, Xeroform (petrolatum gauze).
METHODS:
Twenty-four partial-thickness wounds were created on the backs of 4 pigs using a dermatome. Wounds (n = 4 per dressing type per pig) were treated with Xeroform, Opsite (polyurethane film), Kaltostat ( calcium sodium alginate), DuoDERM (hydrocolloid), Aquacel (hydrofiber), and Mepilex (silicone foam). Full-thickness skin samples were excised at 3 or 5 days and evaluated histologically for reepithelialization and inflammation. Comparisons also included incidence of infection, ease of use, and cost analyses.
RESULTS:
DuoDERM elicited the greatest percent reepithelialization (81%) and Mepilex the lowest (33%) after 3 days (P = 0.004). All dressings demonstrated complete reepithelialization except Mepilex (85%) at 5 days. There were no infections and inflammation was mild among all treatments. Mepilex was easiest to use, whereas Aquacel, Kaltostat, and Opsite were most difficult (P = 0.03). Xeroform was most cost-effective and Aquacel most expensive. Combined scoring revealed DuoDERM = Xeroform > Opsite = Mepilex > Kaltostat > Aquacel.
CONCLUSIONS:
DuoDERM and Xeroform were most effective overall. DuoDERM tended to outperform all dressings in reepithelialization at 3 days, while Xeroform was least expensive, easy to use, and demonstrated rapid reepithelialization. These findings suggest that Xeroform may be preferred for use on large donor-site areas. DuoDERM may be more appropriate for small donor sites when healing time is a priority.
BACKGROUND:
Nuclear factor-kappa B (NF-kappaB) signaling is an important link between inflammation and peritoneal carcinomatosis in human ovarian cancer. Our objective was to track NF-kappaB signaling during ovarian cancer progression in a syngeneic mouse model using tumor cells stably expressing an NF-kappaB reporter.
METHODS:
ID8 mouse ovarian cancer cells stably expressing an NF-kappaB-dependent GFP/luciferase (NGL) fusion reporter transgene (ID8-NGL) were generated, and injected intra-peritoneally into C57BL/6 mice. NGL reporter activity in tumors was non-invasively monitored by bioluminescence imaging and measured in luciferase assays in harvested tumors. Ascites fluid or peritoneal lavages were analyzed for inflammatory cell and macrophage content, and for mRNA expression of M1 and M2 macrophage markers by quantitative real-time RT-PCR. 2-tailed Mann-Whitney tests were used for measuring differences between groups in in vivo experiments.
RESULTS:
In ID8-NGL cells, responsiveness of the reporter to NF-kappaB activators and inhibitors was confirmed in vitro and in vivo. ID8-NGL tumors in C57BL/6 mice bore histopathological resemblance to human high-grade serous ovarian cancer and exhibited similar peritoneal disease spread. Tumor NF-kappaB activity, measured by the NGL reporter and by western blot of nuclear p65 expression, was markedly elevated at late stages of ovarian cancer progression. In ascites fluid, macrophages were the predominant inflammatory cell population. There were elevated levels of the M2-like pro-tumor macrophage marker, mannose-receptor, during tumor progression, and reduced levels following NF-kappaB inhibition with thymoquinone.
CONCLUSIONS:
Our ID8-NGL reporter syngeneic model is suitable for investigating changes in tumor NF-kappaB activity during ovarian cancer progression, how NF-kappaB activity influences immune cells in the tumor microenvironment, and effects of NF-kappaB-targeted treatments in future studies.
CONTEXT:
Endometriosis is characterized by the growth of ectopic endometrial tissue. Nerve fibers are frequently associated with ectopic lesions, and neurogenic inflammation may play a role in endometriosis.
OBJECTIVE:
The purpose of this study was to determine the presence of tachykinin receptors in endometriotic lesions and the role of TNFa on their expression.
DESIGN:
This study was an assessment of matching eutopic and ectopic endometrial tissue and peritoneal fluid from patients with endometriosis and an in vitro analysis of primary endometrial cells.
SETTING:
The setting was a university hospital.
PATIENTS:
Participants were premenopausal women undergoing laparoscopy.
INTERVENTIONS:
Endometriotic lesions were removed surgically.
MAIN OUTCOME MEASURES:
Tachykinin mRNA (TACR1/2) and protein (neurokinin 1 receptor [NK1R]) expression in both eutopic and ectopic endometrial tissue from patients with endometriosis and the correlation to peritoneal fluid TNFa were measured. Primary endometrial epithelial and stromal cells were assessed in vitro to determine the induction of TACR1/2 and NK1R expression after TNFa treatment. Cell viability of endometrial stromal cells after substance P exposure was also assessed.
RESULTS:
Expression of both TACR1 and TACR2 mRNA was significantly higher in the ectopic than in the eutopic tissue. Both TACR1 mRNA and NK1R protein expression was significantly correlated with peritoneal fluid TNFa, and in vitro studies confirmed that TNFa treatment induced both TACR1 mRNA and NK1R protein expression in endometrial stromal cells. In endometrial stromal cells, substance P treatment enhanced cell viability, which was inhibited by a specific NK1R antagonist.
CONCLUSIONS:
NK1R expression is induced in ectopic endometrial tissue by peritoneal TNFa. Induction of NK1R expression may permit endometriotic lesion maintenance via exposure to substance P.
PURPOSE:
Circulating tumor cells (CTC) might function as early markers for breast cancer metastasis or monitoring therapy efficacy. Enrichment and identification of CTCs are based on epithelial markers that might be modulated during epithelial-mesenchymal transition. Little is known about the expression of keratins in CTCs and whether all CTCs can be detected with antibodies directed against a limited panel of keratins.
EXPERIMENTAL DESIGN:
Protein expression of keratin 2, 4-10, 13-16, 18, and 19 were assessed by a cocktail of antibodies (C11, AE1, AE3, and K7) and keratin antibodies C11 and A45-B/B3 alone in 11 breast cancer cell lines and 50 primary breast carcinomas and their lymph node metastases. Furthermore, CTCs were assessed in blood of 70 metastatic breast cancer patients.
RESULTS:
Claudin-low cell lines did not show expression of normal breast epithelial keratins but were positive for K14 and K16, detected by the cocktail only. Primary breast carcinomas showed changes in keratin expression during metastatic progression to the lymph nodes. In 35 of 70 patients CTCs were identified, of which 83%, 40%, and 57% were identified by the cocktail, C11 and A45-B/B3, respectively. Identification of CTCs by the cocktail was associated with shorter survival (P < 0.01). In silico analyses revealed association between KRT16 expression and shorter relapse-free survival in metastatic breast cancer.
CONCLUSION:
Breast cancer cells show a complex pattern of keratin expression with potential biologic relevance. Individual keratin antibodies recognizing only a limited set of keratins inherit the risk to miss biologically relevant CTCs in cancer patients, and antibody cocktails including these keratins are therefore recommended.
©2012 AACR.
BACKGROUND:
Ischemia/reperfusion (I/R) injury is a major cause of acute renal failure (ARF). ARF is reversible, due to an innate regenerative process, which is thought to depend partly on bone marrow-derived progenitor cells. The significance of these cells in the repair process has been questioned in view of their relatively low frequency. Here, we hypothesize that the severity of renal damage and the postischemic recovery time are determinants of tubular bone marrow-derived cell (BMDC) engraftment.
METHODS:
We used a model of unilateral renal I/R in F344 rats reconstituted with R26-human placental alkaline phosphatase (hPAP) transgenic bone marrow, in which we quantified and characterized tubular BMDC engraftment with increasing severity of damage and in time.
RESULTS:
After I/R injury, BMDC engrafted the tubular epithelium and acquired an epithelial phenotype. Tubular epithelial BMDC engraftment increased with longer ischemic time, indicating that tubular epithelial BMDC engraftment increases with the severity of damage. The number of circulating progenitor cells doubled early after I/R injury and was followed by a transient increase in tubular epithelial BMDC engraftment. The latter positively correlated with morphological recovery of the kidney over time. CONCLUSION. The extent of tubular BMDC engraftment depends on the severity of renal damage and follows a distinct time course after I/R injury. Therefore, the severity of damage and time course need to be taken into account when interpreting data on the role of tubular BMDC engraftment in renal repair after I/R injury.