Anti-Ly6G Antibody (A86686) has been discontinued and is no longer available.
View all Ly6G Antibodies.
Unconjugated
SIRT6, a member of the NAD (+)-dependent class III deacetylase sirtuin family, plays important roles in the maintenance of cardiovascular homeostasis. Telomere shortening is a risk factor for age-associated diseases, including heart disease. In the present study, we investigated the role of SIRT6 and telomerase in a mouse model of transverse aortic constriction (TAC)-induced heart failure. SIRT6, telomerase reverse transcriptase (TERT), and telomere repeat binding factor (TRF)-1 were significantly downregulated in TAC mice compared with their expression in sham-operated mice. Lentiviral vector-mediated overexpression of SIRT6 upregulated TERT and TRF1 and increased the survival of mice after TAC. Echocardiography and hemodynamic measurements as well as histological analyses indicated that SIRT6 overexpression attenuated TAC-induced heart dysfunction and decreased TAC-induced cardiac inflammatory responses, reducing cardiac fibrosis and decreasing infarct size. Taken together, our findings indicate that SIRT6 protects the myocardium against damage and this effect may be mediated by the modulation of telomeres. Our findings linking SIRT6 and telomere integrity in the heart warrant further investigation into the underlying mechanisms and support SIRT6 as a promising therapeutic target for the treatment of cardiovascular diseases.
Streptococcus agalactiae can cause urinary tract infection (UTI) including cystitis and asymptomatic bacteriuria (ABU). The early host-pathogen interactions that occur during S. agalactiae UTI and subsequent mechanisms of disease pathogenesis are poorly defined. Here, we define the early interactions between human bladder urothelial cells, monocyte-derived macrophages, and mouse bladder using uropathogenic S. agalactiae (UPSA) 807 and ABU-causing S. agalactiae (ABSA) 834 strains. UPSA 807 adhered, invaded and killed bladder urothelial cells more efficiently compared to ABSA 834 via mechanisms including low-level caspase-3 activation, and cytolysis, according to lactate dehydrogenase release measures and cell viability. Severe UPSA 807-induced cytotoxicity was mediated entirely by the bacterial β-hemolysin/cytolysin (β-H/C) because an β-H/C-deficient UPSA 807 isogenic mutant, UPSA 807ΔcylE, was not cytotoxic in vitro; the mutant was also significantly attenuated for colonization in the bladder in vivo. Analysis of infection-induced cytokines, including IL-8, IL-1β, IL-6 and TNF-α in vitro and in vivo revealed that cytokine and chemokine responses were dependent on expression of β-H/C that also elicited severe bladder neutrophilia. Thus, virulence of UPSA 807 encompasses adhesion to, invasion of and killing of bladder cells, pro-inflammatory cytokine/chemokine responses that elicit neutrophil infiltration, and β-H/C-mediated subversion of innate immune-mediated bacterial clearance from the bladder.
Increasing incidence of inflammatory bowel disorders demands a better understanding of the molecular mechanisms underlying its multifactorial aetiology. Here we demonstrate that mice deficient for REGγ, a proteasome activator, show significantly attenuated intestinal inflammation and colitis-associated cancer in dextran sodium sulfate model. Bone marrow transplantation experiments suggest that REGγ's function in non-haematopoietic cells primarily contributes to the phenotype. Elevated expression of REGγ exacerbates local inflammation and promotes a reciprocal regulatory loop with NFκB involving ubiquitin-independent degradation of IκBɛ. Additional deletion of IκBɛ restored colitis phenotypes and inflammatory gene expression in REGγ-deficient mice. In sum, this study identifies REGγ-mediated control of IκBɛ as a molecular mechanism that contributes to NFκB activation and promotes bowel inflammation and associated tumour formation in response to chronic injury.
Macrophages (Mø) are integral in ischemia/reperfusion injury-incited (I/R-incited) acute kidney injury (AKI) that leads to fibrosis and chronic kidney disease (CKD). IL-34 and CSF-1 share a receptor (c-FMS), and both cytokines mediate Mø survival and proliferation but also have distinct features. CSF-1 is central to kidney repair and destruction. We tested the hypothesis that IL-34-dependent, Mø-mediated mechanisms promote persistent ischemia-incited AKI that worsens subsequent CKD. In renal I/R, the time-related magnitude of Mø-mediated AKI and subsequent CKD were markedly reduced in IL-34-deficient mice compared with controls. IL-34, c-FMS, and a second IL-34 receptor, protein-tyrosine phosphatase ζ (PTP-ζ) were upregulated in the kidney after I/R. IL-34 was generated by tubular epithelial cells (TECs) and promoted Mø-mediated TEC destruction during AKI that worsened subsequent CKD via 2 distinct mechanisms: enhanced intrarenal Mø proliferation and elevated BM myeloid cell proliferation, which increases circulating monocytes that are drawn into the kidney by chemokines. CSF-1 expression in TECs did not compensate for IL-34 deficiency. In patients, kidney transplants subject to I/R expressed IL-34, c-FMS, and PTP-ζ in TECs during AKI that increased with advancing injury. Moreover, IL-34 expression increased, along with more enduring ischemia in donor kidneys. In conclusion, IL-34-dependent, Mø-mediated, CSF-1 nonredundant mechanisms promote persistent ischemia-incited AKI that worsens subsequent CKD.
Malaria is a global disease that clinically affects more than two hundred million people annually. Despite the availability of effective antimalarials, mortality rates associated with severe complications are high. Hepatopathy is frequently observed in patients with severe malarial disease and its pathogenesis is poorly understood. Previously, we observed high amounts of hemozoin or malaria pigment in livers from infected mice. In this study, we investigated whether hemozoin is associated with liver injury in different mouse malaria models. C57BL/6J mice infected with the rodent parasites Plasmodium berghei ANKA, P. berghei NK65 or P. chabaudi AS had elevated serum liver enzymes without severe histological changes in the liver, in line with the observations in most patients. Furthermore, liver enzymes were significantly higher in serum of P. chabaudi AS-infected mice compared to mice infected with the P. berghei parasite strains and a strong positive correlation was found between hepatic hemozoin levels, hepatocyte damage and inflammation in the liver with P. chabaudi AS. The observed liver injury was only marginally influenced by the genetic background of the host, since similar serum liver enzyme levels were measured in infected C57BL/6J and BALB/c mice. Intravenous injection of P. falciparum-derived hemozoin in malaria-free C57BL/6J mice induced inflammatory gene transcription in the liver, suggesting that hemozoin may be involved in the pathogenesis of malaria hepatopathy by inducing inflammation.
Patients suffering from inflammatory bowel disease (IBD) are currently treated by systemic drugs that can have significant side effects. Thus, it would be highly desirable to target TNFα siRNA (a therapeutic molecule) to the inflamed tissue. Here, we demonstrate that TNFα siRNA can be efficiently loaded into nanoparticles (NPs) made of poly (lactic acid) poly (ethylene glycol) block copolymer (PLA-PEG), and that grafting of the Fab' portion of the F4/80 Ab (Fab'-bearing) onto the NP surface via maleimide/thiol group-mediated covalent bonding improves the macrophage (MP)-targeting kinetics of the NPs to RAW264.7 cells in vitro. Direct binding was shown between MPs and the Fab'-bearing NPs. Next, we orally administered hydrogel (chitosan/alginate)-encapsulated Fab'-bearing TNFα-siRNA-loaded NPs to 3% dextran sodium sulfate (DSS)-treated mice and investigated the therapeutic effect on colitis. In vivo, the release of TNFα-siRNA-loaded NPs into the mouse colon attenuated colitis more efficiently when the NPs were covered with Fab'-bearing, compared to uncovered NPs. All DSS-induced parameters of colonic inflammation (e.g., weight loss, myeloperoxidase activity, and Iκbα accumulation) were more attenuated Fab'-bearing NPs loaded with TNFα siRNA than without the Fab'-bearing. Grafting the Fab'-bearing onto the NPs improved the kinetics of endocytosis as well as the MP-targeting ability, as indicated by flow cytometry. Collectively, our results show that Fab'-bearing PLA-PEG NPs are powerful and efficient nanosized tools for delivering siRNAs into colonic macrophages.
CD98 is a type II transmembrane glycoprotein whose expression increases in intestinal epithelial cells (IECs) during intestinal inflammation. Enteropathogenic Escherichia coli (EPEC) is a food-borne human pathogen that attaches to IECs and injects effector proteins directly into the host cells, thus provoking an inflammatory response. In the present study, we investigated CD98 and EPEC interactions in vitro and ex vivo and examined FVB wild-type (WT) and villin-CD98 transgenic mice overexpressing human CD98 in IECs (hCD98 Tg mice) and infected with Citrobacter rodentium as an in vivo model. In vivo studies indicated that CD98 overexpression, localized to the apical domain of colonic cells, increased the attachment of C. rodentium in mouse colons and resulted in increased expression of proinflammatory markers and decreased expression of anti-inflammatory markers. The proliferative markers Ki-67 and cyclin D1 were significantly increased in the colonic tissue of C. rodentium-infected hCD98 Tg mice compared to that of WT mice. Ex vivo studies correlate with the in vivo data. Small interfering RNA (siRNA) studies with Caco2-BBE cells showed a decrease in adherence of EPEC to Caco2 cells in which CD98 expression was knocked down. In vitro surface plasmon resonance (SPR) experiments showed direct binding between recombinant hCD98 and EPEC/C. rodentium proteins. We also demonstrated that the partial extracellular loop of hCD98 was sufficient for direct binding to EPEC/C. rodentium. These findings demonstrate the importance of the extracellular loop of CD98 in the innate host defense response to intestinal infection by attaching and effacing (A/E) pathogens.
The very recent studies on human and mice models have indicated an important role of myeloid precursor cells (progenitors or not fully differentiated cells that express the Gr1 antigen also called Gr1-positive myeloid suppressor cells) in the tumor progression and metastasis. They are thought to suppress the immune system and promote angiogenesis via Signal transducer and activator of transcription 3 (STAT3) activation. As of now there is no data available on the correlation of Gr1-positive cell number, phosphorylated STAT3 (p-STAT3) expression and cancer ability to metastasis. Thus, we counted the myeloid precursor cell number and analyzed p-STAT3 expression in 50 canine mammary tumors that gave local/distant metastases and did not metastasize. We showed that the number of Gr1-positive cells and p-STAT3 expression are significantly higher (p < 0.001) in the metastatic tumors than in the non-metastatic ones. We also observed higher expression of p-STAT3 in the canine mammary cancer cell lines with metastatic potential than in other cell lines (p < 0.001). Moreover, the number of myeloid precursors and p-STAT3 expression in metastatic tumors correlate strongly. The tumor infiltrating myeloid precursor cells may invigorate the STAT3 activity (probably via vascular endothelial growth factor - VEGF) that contributes to the tumor angiogenesis and furthermore tumor`s ability to metastasize. The analysis of gene expression in canine mammary cancer cell lines with metastatic potential indicated that semaphorin 3B (SEMA3B) and neuropilin receptors (NRP) may also be important elements in this process. Thus, we discuss the possible interactions within the tumor that may be required for cancer metastatis.
PURPOSE:
Optic neuritis affects most patients with multiple sclerosis (MS), and current treatments are unreliable. The purpose of this study was to characterize the contribution of Th1 and Th17 cells to the development of optic neuritis.
METHODS:
Mice were passively transferred myelin-specific Th1 or Th17 cells to induce experimental autoimmune encephalomyelitis (EAE), a model of neuroautoimmunity. Visual acuity was assessed daily with optokinetic tracking, and 1, 2, and 3 weeks post-induction, optic nerves and retinas were harvested for immunohistochemical analyses.
RESULTS:
Passive transfer experimental autoimmune encephalomyelitis elicits acute episodes of asymmetric visual deficits and is exacerbated in Th17-EAE relative to Th1-EAE. The Th17-EAE optic nerves contained more inflammatory infiltrates and an increased neutrophil to macrophage ratio. Significant geographic degeneration of the retinal ganglion cells accompanied Th17-EAE but not Th1.
CONCLUSIONS:
Th17-induced transfer EAE recapitulates pathologies observed in MS-associated optic neuritis, namely, monocular episodes of vision loss, optic nerve inflammation, and geographic retinal ganglion cell (RGC) degeneration.
AIM:
Myocardial infarction (MI) remains a major cause of death and disability worldwide, despite available reperfusion therapies. Inflammatory signaling is considered nodal in defining final infarct size. Activation of the innate immune receptor toll-like receptors (TLR) 9 prior to ischemia and reperfusion (I/R) reduces infarct size, but the consequence of TLR9 activation timed to the onset of ischemia is not known.
METHODS AND RESULTS:
The TLR9-agonist; CpG B was injected i.p. in C57BL/6 mice immediately after induction of ischemia (30 minutes). Final infarct size, as well as area-at-risk, was measured after 24 hours of reperfusion. CpG B injection resulted in a significant increase in circulating granulocytes and monocytes both in sham and I/R mice. Paradoxically, clear evidence of reduced cardiac infiltration of both monocytes and granulocytes could be demonstrated in I/R mice treated with CpG B (immunocytochemistry, myeloperoxidase activity and mRNA expression patterns). In addition, systemic TLR9 activation elicited significant alterations of cardiac inflammatory genes. Despite these biochemical and cellular changes, there was no difference in infarct size between vehicle and CpG B treated I/R mice.
CONCLUSION:
Systemic TLR9-stimulation upon onset of ischemia and subsequent reperfusion does not alter final infarct size despite causing clear alterations of both systemic and cardiac inflammatory parameters. Our results question the clinical usefulness of TLR9 activation during cardiac I/R.
To determine the mechanism of action of interleukin-27 (IL-27) against rheumatoid arthritis (RA).
Adenovirus containing IL-27 transcript was constructed and was locally delivered into the ankles of mice with collagen-induced arthritis (CIA). Progression of arthritis was determined in treated and untreated mice by measuring ankle circumference and through histologic analysis. IL-17 and its downstream targets as well as cytokines promoting Th17 cell differentiation were quantified by enzyme-linked immunosorbent assay in CIA mouse ankles locally expressing adenoviral IL-27 as well as in control-treated mouse ankles. Ankles from both treatment groups were immunostained for neutrophil and monocyte migration (macrophages in the tissue). Finally, vascularization was quantified by histology and by determining ankle hemoglobin levels.
Ectopic expression of IL-27 in CIA mice ameliorated inflammation, lining hypertrophy, and bone erosion as compared with control-treated CIA mice. Serum and joint levels of IL-17 were significantly reduced in the IL-27-treated group compared with the control-treated group. Two of the main cytokines that induce Th17 cell differentiation and IL-17 downstream target molecules were greatly down-regulated in CIA mouse ankles receiving forced expression of IL-27. The control mice had higher levels of vascularization and monocyte trafficking than did mice ectopically expressing IL-27.
Our results suggest that increased levels of IL-27 relieve arthritis in CIA mouse ankles. This amelioration of arthritis involves a reduction in CIA mouse serum and joint levels of IL-17 and results in decreased IL-17-mediated monocyte recruitment and angiogenesis. Hence, the use of IL-27 may be a strategy for treatment of patients with RA.
Copyright © 2011 by the American College of Rheumatology.
Fulminant hepatitis is a severe liver disease resulting in hepatocyte necrosis. Galectin‑9 (Gal‑9) is a tandem‑repeat‑type galectin that has been evaluated as a potential therapeutic agent for various diseases that regulate the host immune system. Concanavalin A (ConA) injection into mice results in serious, immune‑mediated liver injury similar to human viral, autoimmune and fulminant hepatitis. The present study investigated the effects of Gal‑9 treatment on fulminant hepatitis in vivo and the effect on the expression of microRNAs (miRNAs), in order to identify specific miRNAs associated with the immune effects of Gal‑9. A ConA‑induced mouse hepatitis model was used to investigate the effects of Gal‑9 treatment on overall survival rates, liver enzymes, histopathology and miRNA expression levels. Histological analyses, TUNEL assay, immunohistochemistry and miRNA expression characterization, were used to investigate the degree of necrosis, fibrosis, apoptosis and infiltration of neutrophils and macrophages. Overall survival rates following ConA administration were significantly higher in Gal‑9‑treated mice compared with control mice treated with ConA + PBS. Histological examination revealed that Gal‑9 attenuated hepatocellular damage, reduced local neutrophil infiltration and prevented the local accumulation of macrophages and liver cell apoptosis in ConA‑treated mice. In addition, various miRNAs induced by Gal‑9 may contribute to its anti‑apoptotic, anti‑inflammatory and pro‑proliferative effects on hepatocytes. The results of the present study demonstrate that Gal‑9 may be a candidate therapeutic target for the treatment of fulminant hepatitis.
Preterm birth (PTB) is a major public health problem, with a global prevalence of 9.6% and over a million annual neonatal deaths. In a mouse model of preterm labor (PTL) induced by intravaginal administration of a subclinical dose of lipopolysaccharide (LPS), we previously demonstrated that LPS ascends to the cervix, inducing complement activation, cervical remodeling and PTL. Here we show that complement activation also plays a role in myometrial contractions during PTL in this model. Increased levels of C5a were detected in the myometrium of LPS-treated mice but not in age-matched control or term myometrium. Human and mouse myometrium incubated with C5a showed increased frequency of contractions and expression of connexin 43, suggesting that C5a is an uterotonic molecule. Statins, which showed beneficial effects in preventing complement-mediated pregnancy complications, prevented cervical remodeling, myometrial contractions and PTL in the LPS model. The protective effects of statins in PTL were associated with increased synthesis, expression and activity of heme oxygenase (HO-1) in myometrium and cervix. Coadministration of HO-1 inhibitor tin-protoporphyrin-IX with pravastatin abrogated the protective effects of pravastatin on cervical remodeling and myometrial contractions leading to PTB. In addition, pravastatin inhibited complement activation in the cervix by increasing the synthesis and expression of complement inhibitor decay-accelerating factor. This study in mice suggests that statins might be useful to prevent PTL in humans. Clinical trials in humans are needed and if these results are confirmed, they may form the basis for a new clinical approach to prevent PTB.
The ApoA-I mimetic peptide D-4F has demonstrated potent atheroprotective actions in vivo and in vitro. We investigated the effect of R-D4F (ie, the D-4F peptide with reverse order of amino acids) on intimal hyperplasia after vascular injury in a mouse model of carotid artery ligation. Adult male C57BL/6J mice were pretreated intraperitoneally with vehicle, D-4F (1 mg/kg), or R-D4F (1 mg/kg or 5 mg/kg) daily for 3 days; the mice were then subjected to left carotid artery ligation. All treatments were continued for 28 days after surgery. Neither D-4F nor R-D4F treatment affected serum lipid levels. Morphometric analysis showed that the occluded vessels had significant neointimal formation, compared with the uninjured arteries in vehicle-treated mice. Like the D-4F treatment, R-D4F treatment significantly (P < 0.05) inhibited intimal hyperplasia (-42%), local neutrophil and macrophage infiltration, and mRNA expression of the proinflammatory mediator monocyte chemotactic protein 1 (-55%) and vascular cell adhesion protein 1 (-53%), compared with vehicle. Furthermore, the vasoprotective effect of high-dose R-D4F was significantly enhanced, compared with the low dose. In cultured mouse RAW 264.7 macrophages, pretreatment with R-D4F also effectively inhibited lipopolysaccharide-induced leukocyte integrin CD11b expression, a key molecule for leukocyte infiltration. Taken together, these results suggest that R-D4F has significant anti-inflammatory features and facilitates prevention of neointimal formation after vascular injury in mice.
An imbalance between free radical generation and radical scavenging antioxidant systems results in oxidative stress, which has been associated with cell injury observed in many age-related diseases. The superoxide dismutase (SOD) family is a major antioxidant system, and deficiency of Cu,Zn-superoxide dismutase-1 (Sod1) in mice leads to many different phenotypes that resemble accelerated aging. In this study we examined the morphologic features and the secretory functions of the lacrimal glands in Sod1(-/-) mice. Lacrimal glands showed atrophy of acinar units; fibrosis; infiltration with CD4(+) T cells, monocytes, and neutrophils; increased staining with both 4-hydroxy-2-nonenal and 8-hydroxy-2'-deoxyguanosine; increases in apoptotic cells; and the presence of the epithelial-mesenchymal transition in senescent Sod1(-/-) mice. Electron microscopy findings revealed evidence of epithelial-mesenchymal transition, presence of swollen and degenerated mitochondria, and the presence of apoptotic cell death in the lacrimal glands of senescent Sod1(-/-) mice. These alterations were also associated with the accumulation of secretory vesicles in acinar epithelial cells, decreased production of both stimulated and nonstimulated tears, and a decline in total protein secretion from the lacrimal glands. Our results suggest that Sod1(-/-) mice may be a good model system in which to study the mechanism of reactive oxygen species-mediated lacrimal gland alterations.
The contribution of bacterial infection to tumorigenesis is usually ascribed to infection-associated inflammation. An alternate view is that direct interaction of bacteria with tumor cells promotes tumor progression. Here, we show that the microenvironment of large tumors favors bacterial survival, which in turn directly accelerates tumor growth by activating tumor cell Toll-like receptors (TLR). Listeria monocytogenes (Lm) survives in the microenvironment of large but not small tumors, resulting in the promotion of tumor growth. Lm did not affect the percentage of regulatory T cells or myeloid suppressor cells in the tumor. Through TLR2 signaling, Lm activated mitogen-activated protein kinases and nuclear factor-kappaB in tumor cells, resulting in the increased production of nitric oxide and interleukin-6 and increased proliferation of tumor cells. All of these effects were abrogated by silencing expression of TLR2, but not TLR4. The interaction of Helicobacter pylori with tumor cells from gastric carcinoma patients resulted in similar effects. These findings provide a new insight into infection-associated tumorigenesis and illustrate the importance of antibiotic therapy to treat tumors with bacterial infiltration.
The differentiation of macrophages from their progenitors is controlled by macrophage colony-stimulating factor (CSF-1), which binds to a receptor (CSF-1R) encoded by the c-fms proto-oncogene. We have previously used the promoter region of the CSF-1R gene to direct expression of an enhanced green fluorescent protein (EGFP) reporter gene to resident macrophage populations in transgenic mice. In this paper, we show that the EGFP reporter is also expressed in all granulocytes detected with the Gr-1 antibody, which binds to Ly-6C and Ly-6G or with a Ly-6G-specific antibody. Transgene expression reflects the presence of CSF-1R mRNA but not CSF-1R protein. The same pattern is observed with the macrophage-specific F4/80 marker. Based on these findings, we performed a comparative array profiling of highly purified granulocytes and macrophages. The patterns of mRNA expression differed predominantly through granulocyte-specific expression of a small subset of transcription factors (Egr1, HoxB7, STAT3), known abundant granulocyte proteins (e.g., S100A8, S100A9, neutrophil elastase), and specific receptors (fMLP, G-CSF). These findings suggested that appropriate stimuli might mediate rapid interconversion of the major myeloid cell types, for example, in inflammation. In keeping with this hypothesis, we showed that purified Ly-6G-positive granulocytes express CSF-1R after overnight culture and can subsequently differentiate to form F4/80-positive macrophages in response to CSF-1.
Hemorrhagic shock renders patients susceptible to the development of acute lung injury in response to a second inflammatory stimulus by as yet unclear mechanisms. We investigated the role of neutrophils (PMN) in alveolar macrophage (AMphi) priming, specifically, the role in mediating Toll-like receptor (TLR)4 and TLR2 cross talk in AMphi. Using a mouse model of hemorrhagic shock followed by intratracheal administration of LPS, we explored a novel function of shock-activated PMN in the mechanism of TLR2 upregulation induced by LPS-TLR4 signaling in AMphi. We showed that antecedent hemorrhagic shock enhanced LPS-induced TLR2 upregulation in AMphi. In neutropenic mice subjected to shock, the LPS-induced TLR2 expression was significantly reduced, and the response was restored upon repletion with PMN obtained from shock-resuscitated mice but not by PMN from sham-operated mice. These findings were recapitulated in mouse AMphi cocultured with PMN. The enhanced TLR2 upregulation in AMphi augmented the expression of macrophage inflammatory protein-2, TNF-alpha, and macrophage migration inhibitory factor in the AMphi in response to sequential challenges of LPS and peptidoglycan, a prototypical TLR2 ligand, which physiologically associated with amplified AMphi-induced PMN migration into air pouch and lung alveoli. Thus TLR2 expression in AMphi, signaled by TLR4 and regulated by shock-activated PMN, is an important positive-feedback mechanism responsible for shock-primed PMN infiltration into the lung after primary PMN sequestration.
The expression of secreted protein acidic and rich in cysteine (SPARC) has been associated with the malignant progression of different types of human cancer. SPARC was associated with tumor cell capacity to migrate and invade, although its precise role in tumor progression is still elusive. In the present study, we show that SPARC produced by melanoma cells modulates the antitumor activity of polymorphonuclear leukocytes (PMN). Administration to nude mice of human melanoma cells in which SPARC expression was transiently or stably knocked down by antisense RNA (SPARC-sup cells) promoted PMN recruitment and obliterated tumor growth even when SPARC-sup cells accounted for only 10% of injected malignant cells. In addition, SPARC-sup cells stimulated the in vitro migration and triggered the antimelanoma cytotoxic capacity of human PMN, an effect that was reverted in the presence of SPARC purified from melanoma cells or by reexpressing SPARC in SPARC-sup cells. Leukotrienes, interleukin 8, and growth-related oncogene, in combination with Fas ligand and interleukin 1, mediated SPARC effects. These data indicate that SPARC plays an essential role in tumor evasion from immune surveillance through the inhibition of the antitumor PMN activity.
The development of experimental Lyme arthritis has been correlated with the expression of a number of chemokines and cytokines, however, none of these have been measured directly from the arthritic joint. We examined the temporal expression of IL-1beta, IL-4, IL-6, IL-10, IL-12p70, GM-CSF, IFN-gamma, TNF-alpha, macrophage inflammatory protein-2, KC, macrophage inflammatory protein-1alpha, and monocyte chemoattractant protein-1 directly from the tibiotarsal joint in arthritis-resistant C57BL/6 (B6) and -susceptible C3H/He (C3H) mice. Only the chemokines KC and monocyte chemoattractant protein-1 were differentially expressed in joints of B6 and C3H mice and correlated with the development of Lyme arthritis. Infection of CXCR2(-/-) mice on either genetic background resulted in a significant decrease in the development of pathology, although infection of CCR2(-/-) mice had little or no effect. Neutrophils in CXCR2(-/-) mice were marginalized within blood vessels and could not enter the joint tissue. These results suggest that chemokine-mediated recruitment of neutrophils into the infected joint is a key requirement for the development of experimental Lyme arthritis.
Mouse spleen contains CD4+, CD8alpha+, and CD4-/CD8alpha- dendritic cells (DCs) in a 2:1:1 ratio. An analysis of 70 surface and cytoplasmic antigens revealed several differences in antigen expression between the 3 subsets. Notably, the Birbeck granule-associated Langerin antigen, as well as CD103 (the mouse homologue of the rat DC marker OX62), were specifically expressed by the CD8alpha+ DC subset. All DC types were apparent in the T-cell areas as well as in the splenic marginal zones and showed similar migratory capacity in collagen lattices. The 3 DC subtypes stimulated allogeneic CD4+ T cells comparably. However, CD8alpha+ DCs were very weak stimulators of resting or activated allogeneic CD8+ T cells, even at high stimulator-to-responder ratios, although this defect could be overcome under optimal DC/T cell ratios and peptide concentrations using CD8+ F5 T-cell receptor (TCR)-transgenic T cells. CD8alpha- or CD8alpha+ DCs presented alloantigens with the same efficiency for lysis by cytotoxic T lymphocytes (CTLs), and their turnover rate of class I-peptide complexes was similar, thus neither an inability to present, nor rapid loss of antigenic complexes from CD8alpha DCs was responsible for the low allostimulatory capacity of CD8alpha+ DCs in vitro. Surprisingly, both CD8alpha+ DCs and CD4-/CD8- DCs efficiently primed minor histocompatibility (H-Y male antigen) cytotoxicity following intravenous injection, whereas CD4+ DCs were weak inducers of CTLs. Thus, the inability of CD8alpha+ DCs to stimulate CD8+ T cells is limited to certain in vitro assays that must lack certain enhancing signals present during in vivo interaction between CD8alpha+ DCs and CD8+ T cells.
Previous studies have provided strong evidence for a role for neutrophils in mediating pathology during reperfusion of ischemic tissues. CXC chemokines including interleukin-8, KC/Gro alpha, and macrophage inflammatory protein (MIP)-2, direct neutrophils to tissue sites of inflammation. In the current study we tested the efficacy of antibodies to KC/Gro alpha and MIP-2 in inhibiting neutrophil infiltration into kidneys during reperfusion after 1 hour of warm ischemia using a mouse model. KC mRNA and protein were produced within 3 hours after reperfusion of the ischemic kidneys. MIP-2 mRNA and protein were twofold to fourfold lower than KC and were at low levels until 9 hours after reperfusion. Only 60% of mice subjected to ischemia/reperfusion injury survived to day 3 after reperfusion. Treatment with rabbit neutralizing antibodies to both KC and MIP-2 inhibited neutrophil infiltration into ischemic kidneys during reperfusion, restored renal function as assessed by decreased serum creatinine and urea nitrogen levels to near normal levels, and resulted in complete survival of treated animals. Finally, treatment with both antibodies significantly reduced histologically graded pathology of kidneys subjected to ischemia/reperfusion injury. Collectively, the results indicate the efficacy of neutralizing the chemokines directing neutrophils into ischemic kidneys during reperfusion to inhibit this infiltration and attenuate the resulting pathology.
Interleukin-12 (IL-12) is a heterodimeric cytokine mediating a dynamic interplay between T cells and antigen-presenting cells (APCs). Preclinical studies have demonstrated that recombinant murine IL-12 (rmIL-12) promotes specific antitumor immunity mediated by T cells in several types of tumors. However, the in vivo antitumor properties of IL-12 in acute myeloid leukemia (AML) have not been previously reported. We show here in a murine AML model that systemic administration of rmIL-12 significantly delays tumor growth but is incapable of rescuing mice from lethal leukemia. In contrast, AML cells genetically modified to express IL-12 (IL12-AML) using murine stem cell virus (MSCV) p40 + p35 elicit very potent antileukemic activity. Vaccines with lethally irradiated IL12-AML cells protect naive mice against challenge with wild-type AML cells and, more importantly, can cure mice bearing a considerable leukemic burden. Immunized mice show no signs of systemic IL-12 toxicity and their spleen histology is comparable with naive mice spleen. In vivo depletion of IL-12, interferon-gamma (IFN-gamma), or CD8(+) T cells after injections with live IL12-AML cells abrogates completely the antileukemia immune responses. Studies on the in vitro effects of IFN-gamma on AML cells demonstrate enhanced expression of major histocompatibility complex (MHC) and accessory molecules and induction of the costimulatory molecules B7.1 and B7.2, but no significant direct antiproliferative effect. (51)Cr release assays show that rejection of live IL12-AML cells supports the development of long-lasting leukemia-specific cytotoxic T lymphocyte (CTL) activity. In conclusion, our results demonstrate that IL12-AML vaccination is a safe and potent immunotherapeutic approach that has a great potential to eliminate minimal residual disease in patients with AML.
Flow cytometry and cell sorting have been employed in order to identify and purify murine neutrophils and monocytes. Using a combination of antibodies, we were able to distinguish between these two subsets of myeloid cells. The method described in this paper is simple to perform and can be applied to characterize myeloid cells from blood, spleen, bone marrow and after an induced inflammation.
Herpes simplex virus type 1 (HSV-1) infection of the murine cornea induces the rapid infiltration of neutrophils. We investigated whether these cells could influence virus replication. BALB/c mice treated with monoclonal antibody (MAb) RB6-8C5 experienced a profound depletion of neutrophils in the bloodstream, spleen, and cornea. In these animals, virus titers in the eye were significantly higher than those in the immunoglobulin G-treated controls at 3 days postinfection. By day 9, virus was no longer detectable in the controls, whereas titers of 10(3) to 10(6) PFU were still present in the neutrophil-depleted hosts. Furthermore, virus spread more readily to the skin and brains of MAb RB6-8C5-treated animals, rendering them significantly more susceptible to HSV-1-induced blepharitis and encephalitis. Only 25% of the treated animals survived, whereas all of the controls lived. Although MAb RB6-8C5 treatment did not alter the CD4+ T-cell, B-cell, natural killer cell, or macrophage populations, the CD8+ T-cell population was partially reduced. Therefore, the experiments were repeated in severe combined immunodeficiency mice, which lack CD8+ T cells. Again virus growth was found to be significantly elevated in the eyes, trigeminal ganglia, and brains of the MAb RB6-8C5-treated hosts. These results strongly indicate that in both immunocompetent and immunodeficient mice, neutrophils play a significant role in helping to control the replication and spread of HSV-1 after corneal infection.
Mouse Ly-6 proteins are characterized by lineage-restricted patterns of expression on lymphoid cells. A mAb (1A8) was produced to Ly-6G, a newly described member of the Ly-6 locus. Based on selective reactivity to cloned Ly-6 gene products expressed in EL4J cells, 1A8 was determined to be specific for Ly-6G. Furthermore, mAb to other Ly-6 specificities did not bind to Ly-6G-transfected EL4J cells, indicating that Ly-6G is distinct from other serologically defined Ly-6 specificities. FACS analysis using 1A8 demonstrated that Ly-6G was expressed in bone marrow but not substantially on other lymphoid tissues, including activated T and B cells. In the bone marrow, Ly-6G expression was primarily restricted to the cells with more forward angle light scatter, which are mostly granulocytes. The RB6-8C5 mAb, previously described to detect a myeloid-restricted Ag (Gr-1) on more differentiated granulocytes, also reacted with Ly-6G- and Ly-6C-transfected EL4J cells. Both 1A8 and RB6-8C5 selectively precipitate a M(r) 21 to 25 kDa, glycosylphosphatidylinositol-anchored protein. Collectively, these data indicate that the Gr-1 Ag is a member of the Ly-6 family and further link expression of individual Ly-6 genes with distinct lineages in mouse bone marrow cells.
This study shows that in mice selectively depleted of neutrophils by treatment with a monoclonal antibody, RB6-8C5, listeriosis is severely exacerbated in the liver, but not in the spleen or peritoneal cavity during the crucial first day of infection. At sites of infection in the livers of neutrophil-depleted mice, Listeria monocytogenes grew to large numbers inside hepatocytes. By contrast, in the livers of normal mice neutrophils rapidly accumulated at infectious foci and this was associated with the lysis of infected hepatocytes that served to abort infection in these permissive cells. In the spleen the situation was different, in that depletion of neutrophils did not result in appreciable exacerbation of infection. In this organ intact infected cells, many of which appeared to be fibroblast-like stromal cells, were found at foci of infection in the presence or absence of large numbers of neutrophils. This suggests that neutrophils are less effective at destroying L. monocytogenes-infected target cells in the spleen than in the liver. Consequently, at least during the first day, the organism remained free to multiply intracellularly in the spleen in cells that are permissive for its growth. Presumably, the same situation exists in the peritoneal cavity, because depleting neutrophils did not severely exacerbate infection initiated at this site.
Mice injected i.p. with RB6-8C5 mAb experienced a profound depletion of neutrophils in the bloodstream and spleen and significant impairment of their resistance to experimental infection with Listeria monocytogenes. Control mice survived i.v. inoculation with 5 x 10(4) L. monocytogenes; whereas, most RB6-8C5 mAb-treated mice inoculated i.v. with as few as 10 L. monocytogenes died within 6 days. RB6-8C5 mAb treatment was particularly deleterious when given within the first 24 h after i.v. inoculation with L. monocytogenes; however, some adverse effect was observed even when administration was delayed until 3 or 5 days after bacterial inoculation. Histopathologic examination of the livers of RB6-8C5 mAb-treated mice revealed necrotic foci that were characterized by few inflammatory cells and massive numbers of Gram-positive bacteria within hepatocytes. Additional evidence that the effects of RB6-8C5 mAb administration were chiefly due to neutrophil depletion include: 1) the effects of RB6-8C5 mAb treatment occurred more rapidly than what is generally seen in mice treated with anti-T cell mAbs, 2) similar results were observed with normal and scid mice, 3) RB6-8C5 mAb administration did not diminish delayed-type hypersensitivity nor the ability of spleen cells from immunized mice to transfer resistance, and 4) natural killer cell activity was unaffected by RB6-8C5 mAb administration. The results of this study provide additional evidence in support of the importance of neutrophils in the early stage of innate resistance to murine listeriosis.
The role for neutrophils in the resolution of primary and secondary infection with Listeria monocytogenes was studied. The results show that although control mice started to clear Listeria from their spleens and livers between days 2 and 4 of sublethal primary infection and eradicated bacteria in 2 weeks, mice given a specific granulocyte-depleting antibody (RB6-8C5) on days 4 or 6 of infection developed lethal listeriosis. Likewise, treatment of immunized mice with RB6-8C5 monoclonal antibody abolished their acquired ability to resolve a lethal challenge infection. The results demonstrate that neutrophils are necessary for the resolution of secondary and primary Listeria infection.
Using the murine colon adenocarcinoma C-26 cell line, engineered to release granulocyte colony-stimulating factor (G-CSF) (C-26/G-CSF), were studied the mechanisms responsible for inhibition of tumor take in syngeneic animals and of regression of an established tumor in sublethally irradiated mice injected with these cells. Immunocytochemistry and in situ hybridization, performed to characterize tumor-infiltrating leukocytes and their cytokine expression, respectively, indicated that polymorphonuclear leukocytes (PMN) were the major cells responsible for inhibition of tumor take and that they expressed mRNA for interleukin 1 alpha (IL-1 alpha), IL-1 beta, and tumor necrosis factor alpha (TNF-alpha). Expression of interferon gamma (IFN-gamma) and of IL-4 was undetectable, consistent with the absence of T lymphocytes at the site of tumor injection. In mice injected with C-26/G-CSF cells after 600-rad irradiation, the tumors grew to approximately 1.5 cm in 30 d, regressing completely thereafter in 70-80% of mice. During the growing phase, tumors were infiltrated first by PMN (between days 15 and 20), then by macrophages, and last by T lymphocytes. Both CD4+ and CD8+ T cells were present but only CD8 depletion significantly abrogated tumor regression. Depletion of PMN by the RB6-8C5 antigranulocytes monoclonal antibody reduced the number of T cells infiltrating the tumor and prevented tumor regression. In situ hybridization performed at the beginning of tumor regression revealed the presence of mRNA for IL-1 alpha, IL-1 beta, and TNF-alpha, but also the presence of cells, with lymphoid morphology, expressing IFN-gamma. Tumors from mice treated with recombinant IFN-gamma (between days 20 and 35) were rejected faster, whereas mice treated with antibodies to IFN-gamma (from day 20) died of progressive tumor. Cyclosporin A treatment (started at day 20) also abrogated tumor regression. These results indicate that inhibition of tumor take and regression in this model occurs through different mechanisms that involve PMN and PMN-T cell interactions, respectively, as well as a combination of cytokines that, for tumor regression, require IFN-gamma. Thus, gene transfer of a single cytokine gene such as G-CSF into tumor cells appears to be sufficient to trigger the cascade of cell interactions and cytokine production necessary to destroy a cancer nodule.
The interaction of elicited murine polymorphonuclear neutrophils (PMN) and the thermally dimorphic fungal pathogen Blastomyces dermatitidis in vitro was studied. The PMN elicited intraperitoneally with thioglycollate, in normal mice or mice immune to B dermatitidis, failed to reduce colony forming units (CFU) of B dermatitidis in the inoculum in a 4-hr in vitro assay, even in the presence of 10% fresh immune serum. In contrast, PMN elicited intraperitoneally in immune mice by injection of nonviable B dermatitidis cells significantly reduced inoculum CFU (60 +/- 5%) under the same conditions. Furthermore, nonviable B dermatitidis intraperitoneally (i.p.) in normal mice or nonviable Candida albicans i.p. in immune mice failed to elicit peritoneal exudate cells that reduced inoculum CFU in this system. These results support the concept that PMN, elicited in a site by means of an immunological reaction, acquired enhanced microbicidal activity. The fungicidal activity of immunologically elicited PMN was shown to be most effective at high effector to target cell ratios (1,000:1), maximal within 2 hr of coculture, and significantly enhanced in the presence of fresh immune serum compared to heat-inactivated immune serum, normal mouse serum, or fetal bovine serum. Such PMN also had significantly enhanced fungicidal activity against C albicans compared to normal PMN. Fungicidal activity was abrogated in the presence of catalase, implicating hydrogen peroxide generation as the killing mechanism in the activated cells.
The interaction of leukocytes with endothelial cells is intrinsic to the process of leukocyte extravasation, whether during the entry of blood polymorphonuclear leukocytes and monocytes into sites of acute and chronic inflammation, or during the homing of lymphocytes to lymphoid organs. A lymphocyte surface glycoprotein, defined by monoclonal antibody MEL-14, has been described that appears to mediate lymphocyte recognition of postcapillary venules in peripheral lymph nodes, and to control the migration of lymphocytes from the blood into these lymphoid organs. We now report that the antigenic determinant recognized by MEL-14 is present at high levels on other leukocytes as well, including neutrophils, monocytes, and eosinophils; and we demonstrate involvement of the MEL-14 antigen in neutrophil-endothelial cell interactions. MEL-14 immunoprecipitates a neutrophil surface protein of Mr approximately 100,000, similar in m.w. to the 80,000 to 90,000 dalton lymphocyte surface MEL-14 antigen, and it blocks the interaction of neutrophils with endothelial cells in an in vitro model of adhesion to postcapillary venules in lymph node frozen sections. Neutrophil binding to lymph node venules is also inhibited by PPME, a mannose-6-phosphate-rich yeast polysaccharide that is thought to mimic the endothelial cell ligand for the MEL-14-defined lymphocyte receptor. Interestingly, neither MEL-14 nor PPME exhibit a major effect on neutrophil binding to postcapillary venules in Peyer's patches, suggesting that as for lymphocytes, the neutrophil MEL-14 antigen is involved in recognition of tissue-specific endothelial determinants. Finally, we show that MEL-14 inhibits the capacity of neutrophils to migrate from the blood into sites of acute inflammation in the skin. These observations lead us to propose that receptors for tissue-specific endothelial determinants are utilized by neutrophils and lymphocytes and probably other leukocytes during the physiologic process of leukocyte extravasation in vivo.
Using a new Ly-6C-specific antibody (Monts-1) we show that this class of antigens are differentially expressed on monocytes/macrophages and endothelial cells. Recently elicited peritoneal exudate Mac-1+ mononuclear cells, as well as Mac-1+ mononuclear cells in the bone marrow and in the peripheral blood, express high levels of Ly-6C. Ly-6C+ mononuclear Mac-1+ cells are absent in normal uninflamed skin, but are present in high numbers in skin lesions 3 days after the s.c. injection of lipopolysaccharide, concanavalin A or complete Freund's adjuvant. In addition, large Ly-6C+ mononuclear cells are predominant in chronic granulomas induced by complete Freund's adjuvant. Resident macrophages in a variety of tissues express low levels or in many cases do not express Ly-6C. Two out of three monocyte-like cell lines are Ly-6C+, whereas macrophage-like cell lines are negative. Ly-6C+ monocytes/macrophages lose the Ly-6C antigen within 24 h after in vitro culture. Ly-6C- cultured monocytes and Ly-6C- monocyte-like cell lines, but not fully differentiated macrophages and macrophage-like cell lines, can be induced to express the Ly-6C antigen by interferon-gamma. A population of small vessel endothelial cells in diverse tissues also express high levels of Ly-6C. The present findings suggest that the Ly-6C antigen family, shown by others to be involved in T cell activation, may have more general importance in immune responses and cellular differentiation than previously appreciated.
Murine bone marrow cells expressing the cell surface Ag RB6-8C5 were identified by fluorescence-activated cell-sorting analysis using a rat IgG mAb. The fluorescent intensity of RB6-8C5 was variable on bone marrow cells. This made it possible to separate bone marrow cells into distinct subpopulations, RB6-8C5neg, RB6-8C5lo, and RB6-8C5hi cells. Morphologic analysis of the sorted populations demonstrated that the Ag was expressed on myeloid cells. The expression of RB6-8C5 increases with granulocyte maturation, whereas expression is transient on cells in the monocytic lineage. The RB6-8C5hi sorted cells were enriched for end-stage neutrophils (75%), whereas the RB6-8C5lo sorted cells contained more immature myeloid cells and myelocytes (75%). Lymphocytes and macrophages were less than 5% in any RB6-8C5+ population, whereas the erythroid precursors were RB6-8C5neg. The colony forming unit culture (CFU-C) (greater than 90%) were found in the RB6-8C5neg and RB6-8C5lo populations, and all the CFU-granulocyte, erythroid, megakaryocyte, and macrophage (CFU-GEMM) and burst-forming units-erythroid (BFU-E) were in the RB6-8C5neg population. Granulocyte-macrophage-CSFR (GM-CSFR) and IL-1 alpha R were expressed on RB6-8C5hi bone marrow cells, whereas no receptors could be detected on RB6-8C5neg and RB6-8C5lo cells. The expression of the RB6-8C5 Ag can be induced on RB6-8C5neg cells in liquid culture by IL-3 and granulocyte-macrophage CSF. Thus, RB6-8C5 is a myeloid differentiation Ag whose expression can be regulated by cytokines.
BACKGROUND:
Although neutrophils are crucially involved in inflammation, they have received only little attention in metabolic syndrome (MetS). We hypothesized that neutrophil infiltration into adipose tissue (AT) may occur at an early stage of MetS, in association with modulation of major functions of neutrophils and of their bone marrow production.
METHODS:
Fifty-six male Sprague-Dawley rats were fed regular (control rats (CRs)) or high-fructose (60%; fructose-fed rats (FFRs)) diets. After 6 weeks, metabolic parameters were measured. Distribution of neutrophils into AT was investigated by immunohistochemistry. Function of circulating neutrophils (activation, reactive oxygen species production, phagocytosis, and apoptosis) was determined by flow cytometry. Granulopoiesis was evaluated by measuring the number and survival characteristics of neutrophil progenitors using bone marrow culture assays and flow cytometry.
RESULTS:
Compared with the CR group, the FFR group developed MetS (i.e., arterial hypertension, hypertriglyceridemia, fasting hyperglycemia, and greater intra-abdominal AT volume) and presented higher neutrophil infiltration into AT. At resting state, no significant difference for circulating neutrophil functions was observed between the 2 groups. In contrast, circulating neutrophils from the FFR group exhibited higher responses to phorbol-12-myristate-13-acetate for all studied functions, compared with the CR group, suggesting that early MetS induces neutrophil priming. In parallel, a diminished clonal capacity and an increased apoptosis in bone marrow-derived granulocyte progenitors and neutrophil precursors were observed in the FFR group compared with the CR group.
CONCLUSIONS:
These results provide evidence of an increased infiltration into intra-abdominal AT and modified production, function, and phenotype of neutrophils at an early stage of high-fructose diet-induced MetS.
© American Journal of Hypertension, Ltd 2014. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
BACKGROUND:
Tumor cells produce various cytokines and chemokines that attract leukocytes. Leukocytes can amplify parenchymal innate immune responses, and have been shown to contribute to tumor promotion. Neutrophils are among the first cells to arrive at sites of inflammation, and the increased number of tumor-associated neutrophils is linked to poorer outcome in patients with lung cancer.
RESULTS:
We have previously shown that COPD-like airway inflammation promotes lung cancer in a K-ras mutant mouse model of lung cancer (CC-LR). This was associated with severe lung neutrophilic influx due to the increased level of neutrophil chemoattractant, KC. To further study the role of neutrophils in lung tumorigenesis, we depleted neutrophils in CC-LR mice using an anti-neutrophil antibody. This resulted in a significant reduction in lung tumor number. We further selectively inhibited the main receptor for neutrophil chemo-attractant KC, CXCR2. Similarly, this resulted in suppression of neutrophil recruitment into the lung of CC-LR mice followed by significant tumor reduction. Neutrophil elastase (NE) is a potent elastolytic enzyme produced by neutrophils at the site of inflammation. We crossed the CC-LR mice with NE knock-out mice, and found that lack of NE significantly inhibits lung cancer development. These were associated with significant reduction in tumor cell proliferation and angiogenesis.
CONCLUSION:
We conclude that lung cancer promotion by inflammation is partly mediated by activation of the IL-8/CXCR2 pathway and subsequent recruitment of neutrophils and release of neutrophil elastase. This provides a baseline for future clinical trials using the IL-8/CXCR2 pathway or NE inhibitors in patients with lung cancer.