Biotin
Calcium transport across the membrane of the sarcoplasmic reticulum (SR) plays an important role in the regulation of heart muscle contraction and relaxation. The sarco(endo)plasmic reticulum Ca(2+) ATPase (SERCA) 2a is responsible for Ca(2+) up-take by this organelle and is inhibited in a reversible manner by phospholamban, another SR membrane protein. Thus, alleviation of phospholamban-mediated inhibition of SERCA2a is a potential therapeutic option for heart failure and cardiomyopathy. We have now applied the systematic evolution of ligands by exponential enrichment protocol to a library of single-stranded DNA molecules containing a randomized 40-nucleotide sequence to isolate aptamers that bind phospholamban. One of the obtained aptamers, designated Apt-9, was found to specifically bind to the cytoplasmic region of phospholamban in vitro with high affinity (dissociation constant, approximately 20 nM). Apt-9 increased the Ca(2+)-dependent ATPase activity of cardiac SR vesicles but not that of SR vesicles from skeletal muscle in a concentration-dependent manner. It also shifted the Ca(2+) concentration-response curve for this ATPase activity to the left. These effects of Apt-9 were not mimicked by an oligonucleotide with a scrambled version of the Apt-9 sequence. Thus, our results indicate that Apt-9 activates SERCA2a by alleviating the inhibitory effect of phospholamban on this ATPase, and they suggest that phospholamban-specific aptamers warrant further investigation as potential therapeutic agents for heart failure and cardiomyopathy.