Unconjugated
Human leukocyte antigen (HLA)-G plays a crucial role in conferring fetal-maternal tolerance and ensuring a successful pregnancy. CD56bright natural killer (NK) cells accumulate at the maternal decidua in large numbers during pregnancy and are found in direct contact with fetal trophoblasts. There are increasing evidences that decidual NK (dNK) cells are crucial for pregnancy. However, the regulation of dNK cells is mostly unknown. Here, we provide evidences that the secretion function of dNK cells in recurrent spontaneous abortion was impaired, which led to the impairment of the proinvasion and proangiogenesis functions of dNK cells. Decreased HLA-G expression induced by the transfection of miR-133a mimics in HTR-8/SVneo affected the secretory functions of dNK cells. Thus, our data revealed that the functions of dNK cells could be suppressed by the decreased expression of HLA-G and suggest a possible mechanism of recurrent miscarriage.
Development of the human placenta and its different epithelial trophoblasts is crucial for a successful pregnancy. Besides fusing into a multinuclear syncytium, the exchange surface between mother and fetus, progenitors develop into extravillous trophoblasts invading the maternal uterus and its spiral arteries. Migration into these vessels promotes remodelling and, as a consequence, adaption of blood flow to the fetal-placental unit. Defects in remodelling and trophoblast differentiation are associated with severe gestational diseases, such as preeclampsia. However, mechanisms controlling human trophoblast development are largely unknown. Herein, we show that Notch1 is one such critical regulator, programming primary trophoblasts into progenitors of the invasive differentiation pathway. At the 12th wk of gestation, Notch1 is exclusively detected in precursors of the extravillous trophoblast lineage, forming cell columns anchored to the uterine stroma. At the 6th wk, Notch1 is additionally expressed in clusters of villous trophoblasts underlying the syncytium, suggesting that the receptor initiates the invasive differentiation program in distal regions of the developing placental epithelium. Manipulation of Notch1 in primary trophoblast models demonstrated that the receptor promotes proliferation and survival of extravillous trophoblast progenitors. Notch1 intracellular domain induced genes associated with stemness of cell columns, myc and VE-cadherin, in Notch1- fusogenic precursors, and bound to the myc promoter and enhancer region at RBPJκ cognate sequences. In contrast, Notch1 repressed syncytialization and expression of TEAD4 and p63, two regulators controlling self-renewal of villous cytotrophoblasts. Our results revealed Notch1 as a key factor promoting development of progenitors of the extravillous trophoblast lineage in the human placenta.