Unconjugated
Bcl10 is a critical regulator of NF-kappa B activity in T and B cells, coupling antigen receptor signaling to NF-kappa B activation via protein kinase C (PKC). Here we show that PKC or T-cell receptor (TCR)/CD28 signaling results in downregulation of Bcl10 protein levels, thereby attenuating NF-kappa B transcriptional activity. Bcl10 degradation requires an intact caspase recruitment domain and is not observed after stimulation with tumor necrosis factor alpha or lipopolysaccharides. Bcl10 downregulation is not affected by proteasome inhibitors but is accompanied by transient localization to lysosomal vesicles, suggesting involvement of the lysosomal pathway rather than the proteasome. The HECT domain ubiquitin ligases NEDD4 and Itch promote ubiquitination and degradation of Bcl10, thus downmodulating NF-kappa B activation. Since CD3/CD28-induced activation of JNK is not affected by the decline of Bcl10, degradation of Bcl10 selectively terminates IKK/NF-kappa B signaling in response to TCR stimulation. Together, these results suggest a new mechanism of negative signaling in which TCR/PKC signaling initially activates Bcl10 but later promotes its degradation.
Antipsychotic drugs (APDs) are commonly used to ease the symptoms of schizophrenia; however, these same drugs also have an effect on the human immune system. Our previous studies have shown that risperidone and clozapine effectively decrease the production of IFN-γ for CD4(+) T-cells in PBMC. In contrast, haloperidol causes an increase in the production of IFN-γ for CD4(+) T-cells in PBMC. In this study we show that risperidone and clozapine can reduce Th1 cell differentiation and T-bet expression. The differentiation of Th1 cells was reduced in clozapine or risperidone treated PBMC by inhibiting the phosphorylation of AKT but not STAT-4. Typical APD, haloperidol, had the opposite effect in regulating T cell differentiation when compared with atypical APDs including risperidone and clozapine. Haloperidol decreased the expression of GATA-3, a Th2-related transcription factor, by inhibiting NF-κB activation rather than STAT-6 phosphorylation and thus decreased Th2 differentiation. In addition, chronic risperidone and clozapine treatment reduces the IFN-γ producing CD4(+) T-cell population within PBMC. In conclusion, this study suggests that APDs do indeed regulate the body's immune response and therefore all APDs should have their own patent in regulating immune responses.