Unconjugated
Neural stem cells (NSCs) delivered intraventricularly may be therapeutic for diffuse white matter pathology after traumatic brain injury (TBI). To test this concept, NSCs isolated from adult mouse subventricular zone (SVZ) were transplanted into the lateral ventricle of adult mice at two weeks post-TBI followed by analysis at four weeks post-TBI. We examined sonic hedgehog (Shh) signaling as a candidate mechanism by which transplanted NSCs may regulate neuroregeneration and/or neuroinflammation responses of endogenous cells. Mouse fluorescent reporter lines were generated to enable in vivo genetic labeling of cells actively transcribing Shh or Gli1 after transplantation and/or TBI. Gli1 transcription is an effective readout for canonical Shh signaling. In ShhCreERT2;R26tdTomato mice, Shh was primarily expressed in neurons and was not upregulated in reactive astrocytes or microglia after TBI. Corroborating results in Gli1CreERT2;R26tdTomato mice demonstrated that Shh signaling was not upregulated in the corpus callosum, even after TBI or NSC transplantation. Transplanted NSCs expressed Shh in vivo but did not increase Gli1 labeling of host SVZ cells. Importantly, NSC transplantation significantly reduced reactive astrogliosis and microglial/macrophage activation in the corpus callosum after TBI. Therefore, intraventricular NSC transplantation after TBI significantly attenuated neuroinflammation, but did not activate host Shh signaling via Gli1 transcription.
Microglia activation is recognized as the hallmark of neuroinflammation. However, the activation profile and phenotype changes of microglia during the process of retinal degeneration are poorly understood. This study aimed to elucidate the time-spatial pattern of microglia distribution and characterize the polarized phenotype of activated microglia during retinal neuroinflammation and degeneration in rd1 (Pde6βrd1/rd1) mice, the classic model of inherited retinal degeneration. Retinae of rd1 mice at different postnatal days (P7, P14, P21, P28, P56, and P180) were prepared for further analysis. We found most CD11b+ or IBA1+ microglia expressed Ki-67 and CD68 in rd1 mice and these cells migrated toward the layer of degenerative photoreceptors at the rapid rods degeneration phase from P14 to P28. These microglia exhibited typical ameboid activated shape with round bodies and scarce dendrites, while at late phase at P180, they displayed resting ramified morphology with elongated dendrites. Flow cytometry revealed that the percentage of CD86+CD206- M1 microglia increased markedly in rd1 retinae, however, no significant change was observed in CD206+CD86- M2 microglia. Interestingly, CD86+CD206+ microglia, an intermediate state between the two extremes of M1 and M2, increased markedly at the rapid rods degeneration phase. The immunofluorescence images revealed that microglia in rd1 mice highly expressed M1 markers including CD16/32, CD86, and CD40. In addition, increased expression of pro-inflammatory cytokines (TNF-α, IL-6, and CCL2) was observed in rd1 mice. Our findings unfolded a panorama for the first time that microglia conducted distinctive behaviors with the progression of retinal degeneration in rd1 mice. Microglia is activated and particularly polarized to a pro-inflammatory M1 phenotype at the rapid rods degenerative phase, suggesting that the involvement of M1 microglia in the retinal neuroinflammation and degeneration. Most microglia adopted an intermediate polarization "M1½" state in rd1, revealing that microglia orchestrated a complicated continuous spectrum in degenerative retina.
Idiopathic pulmonary fibrosis (IPF) is a fatal progressive fibrotic lung disease characterized by the presence of invasive myofibroblasts in the lung. Currently, there are only two FDA-approved drugs (pirfenidone and nintedanib) for the treatment of IPF. There are no defined criteria to guide specific drug therapy. New methodologies are needed not only to predict personalized drug therapy, but also to screen novel molecules that are on the horizon for treatment of IPF. We have developed a model system that exploits the invasive phenotype of IPF lung tissue. This ex vivo 3D model uses lung tissue from patients to develop pulmospheres. Pulmospheres are 3D spheroids composed of cells derived exclusively from primary lung biopsies and inclusive of lung cell types reflective of those in situ, in the patient. We tested the pulmospheres of 20 subjects with IPF and 9 control subjects to evaluate the responsiveness of individual patients to antifibrotic drugs. Clinical parameters and outcomes were also followed in the same patients. Our results suggest that pulmospheres simulate the microenvironment in the lung and serve as a personalized and predictive model for assessing responsiveness to antifibrotic drugs in patients with IPF.
Noninvasive detection of mild traumatic brain injury (mTBI) is important for evaluating acute through chronic effects of head injuries, particularly after repetitive impacts. To better detect abnormalities from mTBI, we performed longitudinal studies (baseline, 3, 6, and 42 days) using magnetic resonance diffusion tensor imaging (DTI) and diffusion kurtosis imaging (DKI) in adult mice after repetitive mTBI (r-mTBI; daily × 5) or sham procedure. This r-mTBI produced righting reflex delay and was first characterized in the corpus callosum to demonstrate low levels of axon damage, astrogliosis, and microglial activation, without microhemorrhages. High-resolution DTI-DKI was then combined with post-imaging pathological validation along with behavioral assessments targeted for the impact regions. In the corpus callosum, only DTI fractional anisotropy at 42 days showed significant change post-injury. Conversely, cortical regions under the impact site (M1-M2, anterior cingulate) had reduced axial diffusivity (AD) at all time points with a corresponding increase in axial kurtosis (Ka) at 6 days. Post-imaging neuropathology showed microglial activation in both the corpus callosum and cortex at 42 days after r-mTBI. Increased cortical microglial activation correlated with decreased cortical AD after r-mTBI (r = -0.853; n = 5). Using Thy1-YFP-16 mice to fluorescently label neuronal cell bodies and processes revealed low levels of axon damage in the cortex after r-mTBI. Finally, r-mTBI produced social deficits consistent with the function of this anterior cingulate region of cortex. Overall, vulnerability of cortical regions is demonstrated after mild repetitive injury, with underlying differences of DTI and DKI, microglial activation, and behavioral deficits.
Homo and heterozygote cx3cr1 mutant mice, which harbor a green fluorescent protein (EGFP) in their cx3cr1 loci, represent a widely used animal model to study microglia and peripheral myeloid cells. Here we report that microglia in the dentate gyrus (DG) of cx3cr1 (-/-) mice displayed elevated microglial sirtuin 1 (SIRT1) expression levels and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) p65 activation, despite unaltered morphology when compared to cx3cr1 (+/-) or cx3cr1 (+/+) controls. This phenotype was restricted to the DG and accompanied by reduced adult neurogenesis in cx3cr1 (-/-) mice. Remarkably, adult neurogenesis was not affected by the lack of the CX3CR1-ligand, fractalkine (CX3CL1). Mechanistically, pharmacological activation of SIRT1 improved adult neurogenesis in the DG together with an enhanced performance of cx3cr1 (-/-) mice in a hippocampus-dependent learning and memory task. The reverse condition was induced when SIRT1 was inhibited in cx3cr1 (-/-) mice, causing reduced adult neurogenesis and lowered hippocampal cognitive abilities. In conclusion, our data indicate that deletion of CX3CR1 from microglia under resting conditions modifies brain areas with elevated cellular turnover independent of CX3CL1.
Insulin-like growth factor-1 (IGF-1) is a growth factor with differentiating, anti-apoptotic and metabolic functions in the periphery, and anti-inflammatory properties in the nervous system. Mice that have mutations in the Igf1 gene, rendering the gene product inactive (Igf1(-/-)), present with age-related visual loss accompanied by structural alterations in the first synapses of the retinal pathway. Recent advances have revealed a crucial role of autophagy in immunity and inflammation. Keeping in mind this close relationship, we aimed to decipher these processes in the context of the defects that occur during ageing in the retina of Igf1(-/-) mice. Tnfa and Il1b mRNAs, and phosphorylation of JNK and p38 MAPK were elevated in the retinas of 6- and 12-month old Igf1(-/-) mice compared to those in age-matched Igf1(+/+) controls. In 6-month-old Igf1(-/-) retinas, increased mRNA levels of the autophagy mediators Becn1, Atg9, Atg5 and Atg4, decreased p62 (also known as SQSTM1) protein expression together with an increased LC3-II:LC3-I ratio reflected active autophagic flux. However, in retinas from 12-month-old Igf1(-/-) mice, Nlrp3 mRNA, processing of the IL1β pro-form and immunostaining of active caspase-1 were elevated compared to those in age-matched Igf1(+/+) controls, suggesting activation of the inflammasome. This effect concurred with accumulation of autophagosomes and decreased autophagic flux in the retina. Microglia localization and status of activation in the retinas of 12-month-old Igf1(+/+) and Igf1(-/-) mice, analyzed by immunostaining of Cd11b and Iba-1, showed a specific distribution pattern in the outer plexiform layer (OPL), inner plexiform layer (IPL) and inner nuclear layer (INL), and revealed an increased number of activated microglia cells in the retina of 12-month-old blind Igf1(-/-) mice. Moreover, reactive gliosis was exclusively detected in the retinas from 12-month-old blind Igf1(-/-) mice. In conclusion, this study provides new evidence in a mouse model of IGF-1 deficiency that autophagy is an adaptive response that might confer protection against persistent inflammation in the retina during ageing.
Cavitation is a key pathological feature of human tuberculosis (TB), and is a well-recognized risk factor for transmission of infection, relapse after treatment and the emergence of drug resistance. Despite intense interest in the mechanisms underlying cavitation and its negative impact on treatment outcomes, there has been limited study of this phenomenon, owing in large part to the limitations of existing animal models. Although cavitation does not occur in conventional mouse strains after infection with Mycobacterium tuberculosis, cavitary lung lesions have occasionally been observed in C3HeB/FeJ mice. However, to date, there has been no demonstration that cavitation can be produced consistently enough to support C3HeB/FeJ mice as a new and useful model of cavitary TB. We utilized serial computed tomography (CT) imaging to detect pulmonary cavitation in C3HeB/FeJ mice after aerosol infection with M. tuberculosis Post-mortem analyses were performed to characterize lung lesions and to localize matrix metalloproteinases (MMPs) previously implicated in cavitary TB in situ A total of 47-61% of infected mice developed cavities during primary disease or relapse after non-curative treatments. Key pathological features of human TB, including simultaneous presence of multiple pathologies, were noted in lung tissues. Optical imaging demonstrated increased MMP activity in TB lesions and MMP-9 was significantly expressed in cavitary lesions. Tissue MMP-9 activity could be abrogated by specific inhibitors. In situ, three-dimensional analyses of cavitary lesions demonstrated that 22.06% of CD11b+ signal colocalized with MMP-9. C3HeB/FeJ mice represent a reliable, economical and tractable model of cavitary TB, with key similarities to human TB. This model should provide an excellent tool to better understand the pathogenesis of cavitation and its effects on TB treatments.
Mutations in the superoxide dismutase 1 (SOD1) gene contribute to motoneuron degeneration and are evident in 20% of familial amyotrophic lateral sclerosis cases. Mutant SOD1 induces microglial activation through a stimulation of Toll-like receptors 2 and 4 (TLR2 and TLR4). In the present study, we identified the proapoptotic Bcl-2 family protein Bid as a positive regulator of mutant SOD1-induced TLR-nuclear factor-κB (NF-κB) signaling in microglia. bid-deficient primary mouse microglia showed reduced NF-κB signaling in response to TLR4 activation or exposure to conditioned medium derived from SOD1 (G93A) expressing NSC-34 cells. Attenuation of NF-κB signaling in bid-deficient microglia was associated with lower levels of phosphorylated IKKα/β and p65, with a delayed degradation of IκBα and enhanced degradation of Peli1. Upstream of IKK, we found that Bid interacted with, and promoted, the K63-linked polyubiquitination of the E3 ubiquitin ligase tumor necrosis factor receptor associated factor 6 (TRAF6) in microglia. Our study suggests a key role for Bid in the regulation of TLR4-NF-κB proinflammatory signaling during mutant SOD1-induced disease pathology. Bid promotes TLR4-NF-κB signaling by interacting with TRAF6 and promoting TRAF6 K63-linked polyubiquitination in microglia.
Mesenchymal stem cells (MSCs) participate in the repair/remodelling of many tissues, where MSCs commit to different lineages dependent on the cues in the local microenvironment. Here we show that TGFβ-activated RhoA/ROCK signalling functions as a molecular switch regarding the fate of MSCs in arterial repair/remodelling after injury. MSCs differentiate into myofibroblasts when RhoA/ROCK is turned on, endothelial cells when turned off. The former is pathophysiologic resulting in intimal hyperplasia, whereas the latter is physiological leading to endothelial repair. Further analysis revealed that MSC RhoA activation promotes formation of an extracellular matrix (ECM) complex consisting of connective tissue growth factor (CTGF) and vascular endothelial growth factor (VEGF). Inactivation of RhoA/ROCK in MSCs induces matrix metalloproteinase-3-mediated CTGF cleavage, resulting in VEGF release and MSC endothelial differentiation. Our findings uncover a novel mechanism by which cell-ECM interactions determine stem cell lineage specificity and offer additional molecular targets to manipulate MSC-involved tissue repair/regeneration.
High salt is positively associated with the risk of many diseases. However, little is known about the mechanisms. Here we showed that high salt increased proinflammatory molecules, while decreased anti-inflammatory and proendocytic molecules in both human and mouse macrophages. High salt also potentiated lipopolysaccharide-induced macrophage activation and suppressed interleukin 4-induced macrophage activation. High salt induced the proinflammatory aspects by activating p38/cFos and/or Erk1/2/cFos pathways, while inhibited the anti-inflammatory and proendocytic aspects by Erk1/2/signal transducer and activator of transcription 6 pathway. Consistent with the in vitro results, high-salt diet increased proinflammatory gene expression of mouse alveolar macrophages. In mouse models of acute lung injury, high-salt diet aggravated lipopolysaccharide-induced pulmonary macrophage activation and inflammation in lungs. These results identify a novel macrophage activation state, M(Na), and high salt as a potential environmental risk factor for lung inflammation through the induction of M(Na).
Autophagy is a catabolic mechanism facilitating degradation of cytoplasmic proteins and organelles in a lysosome-dependent manner. Autophagy flux is necessary for normal neuronal homeostasis and its dysfunction contributes to neuronal cell death in several neurodegenerative diseases. Elevated autophagy has been reported after spinal cord injury (SCI); however, its mechanism, cell type specificity and relationship to cell death are unknown. Using a rat model of contusive SCI, we observed accumulation of LC3-II-positive autophagosomes starting at posttrauma day 1. This was accompanied by a pronounced accumulation of autophagy substrate protein p62, indicating that early elevation of autophagy markers reflected disrupted autophagosome degradation. Levels of lysosomal protease cathepsin D and numbers of cathepsin-D-positive lysosomes were also decreased at this time, suggesting that lysosomal damage may contribute to the observed defect in autophagy flux. Normalization of p62 levels started by day 7 after SCI, and was associated with increased cathepsin D levels. At day 1 after SCI, accumulation of autophagosomes was pronounced in ventral horn motor neurons and dorsal column oligodendrocytes and microglia. In motor neurons, disruption of autophagy strongly correlated with evidence of endoplasmic reticulum (ER) stress. As autophagy is thought to protect against ER stress, its disruption after SCI could contribute to ER-stress-induced neuronal apoptosis. Consistently, motor neurons showing disrupted autophagy co-expressed ER-stress-associated initiator caspase 12 and cleaved executioner caspase 3. Together, these findings indicate that SCI causes lysosomal dysfunction that contributes to autophagy disruption and associated ER-stress-induced neuronal apoptosis.
Induced pluripotent stem cells (iPSCs) show considerable promise for cell replacement therapies for Huntington's disease (HD). Our laboratory has demonstrated that tail-tip fibroblasts, reprogrammed into iPSCs via two adenoviruses, can survive and differentiate into neuronal lineages following transplantation into healthy adult rats. However, the ability of these cells to survive, differentiate, and restore function in a damaged brain is unknown. To this end, adult rats received a regimen of 3-nitropropionic acid (3-NP) to induce behavioral and neuropathological deficits that resemble HD. At 7, 21, and 42 days after the initiation of 3-NP or vehicle, the rats received intrastriatal bilateral transplantation of iPSCs. All rats that received 3-NP and vehicle treatment displayed significant motor impairment, whereas those that received iPSC transplantation after 3-NP treatment had preserved motor function. Histological analysis of the brains of these rats revealed significant decreases in optical densitometric measures in the striatum, lateral ventricle enlargement, as well as an increase in striosome size in all rats receiving 3-NP when compared with sham rats. The 3-NP-treated rats given transplants of iPSCs in the 7- or 21-day groups did not exhibit these deficits. Transplantation of iPSCs at the late-stage (42-day) time point did not protect against the 3-NP-induced neuropathology, despite preserving motor function. Transplanted iPSCs were found to survive and differentiate into region-specific neurons in the striatum of 3-NP rats, at all transplantation time points. Taken together, these results suggest that transplantation of adenovirus-generated iPSCs may provide a potential avenue for therapeutic treatment of HD.
The enzyme 15-lipoxygenase (15-LO) plays a role in atherogenesis (also known as atherosclerosis), but the underlying mechanisms are unclear. We found that 15(S)-hydroxyeicosatetraenoic acid [15(S)-HETE], the major 15-LO-dependent metabolite of arachidonic acid, stimulated the production of reactive oxygen species (ROS) by monocytes through the xanthine oxidase-mediated activation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. ROS production led to the Syk-, Pyk2-, and mitogen-activated protein kinase (MAPK)-dependent production of the proinflammatory cytokine interleukin-17A (IL-17A) in a manner that required the transcription factor CREB (cyclic adenosine monophosphate response element-binding protein). In addition, this pathway was required for the 15(S)-HETE-dependent migration and adhesion of monocytes to endothelial cells. Consistent with these observations, we found that peritoneal macrophages from apolipoprotein E-deficient (ApoE-/-) mice fed a high-fat diet (a mouse model of atherosclerosis) exhibited increased xanthine oxidase and NADPH oxidase activities; ROS production; phosphorylation of Syk, Pyk2, MAPK, and CREB; and IL-17A production compared to those from similarly fed ApoE-/-:12/15-LO-/- mice. These events correlated with increased lipid deposits and numbers of monocytes and macrophages in the aortic arches of ApoE-/- mice, which resulted in atherosclerotic plaque formation. Together, these observations suggest that 15(S)-HETE exacerbates atherogenesis by enhancing CREB-dependent IL-17A production and inflammation.
Intravenous Immunoglobulin (IVIG) has been proposed as a potential therapeutic for Alzheimer's disease (AD) and its efficacy is currently being tested in mild-to-moderate AD. Earlier studies reported the presence of anti-amyloid beta (Aβ) antibodies in IVIG. These observations led to clinical studies investigating the potential role of IVIG as a therapeutic agent in AD. Also, IVIG is known to mediate beneficial effects in chronic inflammatory and autoimmune conditions by interfering with various pathological processes. Therefore, we investigated the effects of IVIG and purified polyclonal Aβ-specific antibodies (pAbs-Aβ) on aggregation, toxicity and phagocytosis of Aβ in vitro, thus elucidating some of the potential mechanisms of action of IVIG in AD patients. We report that both IVIG and pAbs-Aβ specifically bound to Aβ and inhibited its aggregation in a dose-dependent manner as measured by Thioflavin T assay. Additionally, IVIG and the purified pAbs-Aβ inhibited Aβ-induced neurotoxicity in the SH-SY5Y human neuroblastoma cell line and prevented Aβ binding to rat primary cortical neurons. Interestingly, IVIG and pAbs-Aβ also increased the number of phagocytosing cells as well as the amount of phagocytosed fibrillar Aβ by BV-2 microglia. Phagocytosis of Aβ depended on receptor-mediated endocytosis and was accompanied by upregulation of CD11b expression. Importantly, we could also show that Privigen dose-dependently reversed Aβ-mediated LTP inhibition in mouse hippocampal slices. Therefore, our in vitro results suggest that IVIG may have an impact on different processes involved in AD pathogenesis, thereby promoting further understanding of the effects of IVIG observed in clinical studies.
APP processing and amyloid-β production play a central role in Alzheimer disease pathogenesis. APP has been considered a ubiquitously expressed protein. In addition to amyloid-β, α- or β-secretase-dependent cleavage of APP also generates soluble secreted APP (APPsα or APPsβ, respectively). Interestingly, APPsβ has been shown to be subject to further cleavage to create an N-APP fragment that binds to the DR6 death receptor and mediates axon pruning and degeneration under trophic factor withdrawal conditions. By performing APP immunocytochemical staining, we found that, unexpectedly, many antibodies yielded nonspecific staining in APP-null samples. Screening of a series of antibodies allowed us to identify a rabbit monoclonal antibody Y188 that is highly specific for APP and prompted us to re-examine the expression, localization, and stability of endogenous APP and APPsβ in wild-type and in APPsβ knock-in mice, respectively. In contrast to earlier studies, we found that APP is specifically expressed in neurons and that its expression cannot be detected in major types of glial cells under basal or neuroinflammatory conditions. Both APPsα and APPsβ are highly stable in the central nervous system (CNS) and do not undergo further cleavage with or without trophic factor support. Our results clarify several key questions with regard to the fundamental properties of APP and offer critical cellular insights into the pathophysiology of APP.
Reactive astrocytes are a pathological hallmark of many CNS injuries and neurodegenerations. They are characterized by hypertrophy of the soma and processes and an increase in the expression of glial fibrillary acidic protein. Because the cells obscure each other in immunostaining, little is known about the behavior of a single reactive astrocyte, nor how single astrocytes combine to form the glial scar. We have investigated the reaction of fibrous astrocytes to axonal degeneration using a transgenic mouse strain expressing enhanced green fluorescent protein in small subsets of astrocytes. Fibrous astrocytes in the optic nerve and corpus callosum initially react to injury by hypertrophy of the soma and processes. They retract their primary processes, simplifying their shape and dramatically reducing their spatial coverage. At 3 d after crush, quantitative analysis revealed nearly a twofold increase in the thickness of the primary processes, a halving of the number of primary processes leaving the soma and an eightfold reduction in the spatial coverage. In the subsequent week, they partially reextend long processes, returning to a near-normal morphology and an extensive spatial overlap. The resulting glial scar consists of an irregular array of astrocyte processes, contrasting with their original orderly arrangement. These changes are in distinct contrast to those reported for reactive protoplasmic astrocytes of the gray matter, in which the number of processes and branchings increase, but the cells continue to maintain nonoverlapping individual territories throughout their response to injury.
The interactions between the cytokine interleukin (IL)-15 and the classical neurotransmitter GABA have been shown in IL15Rα receptor knockout mice by observations of memory deficits and reduction of GABA. To test the hypothesis that IL15 affects anxiety-like behavior, knockout mice without IL15, IL15Rα, or the co-receptor IL2Rγ were subjected to open-field and elevated plus maze tests. All three strains showed reduction of anxiety, with greater changes in the IL15Rα knockout mice than in the IL15 or IL2Rγ knockout mice. This unexpected observation is opposite to the reported increase of anxiety in mice lacking other proinflammatory cytokines or their receptors. The reduced anxiety was not associated with changes in associated serum cytokines. However, Western blotting, qPCR, and immunohistochemistry all showed that IL15Rα knockout mice had mild microgliosis and astrogliosis in the hippocampus. To determine whether this gliosis plays a role in decreasing anxiety, IL15Rα knockout mice were treated with minocycline, but this did not cause a change in open field performance. To determine whether IL15 plays a direct role in anxiety, wildtype mice were treated with IL15 by intraperitoneal injection. This also failed to cause a change in open field behavior under the experimental conditions tested. Thus, IL15Rα is essential for normal anxiety-like behavior, but inhibition of gliosis in the fearless IL15Rα knockout mice or IL15 treatment of normal mice did not acutely modulate behavioral performance as tested.
Epidemiologic and animal studies have shown that exposure to particulate matter air pollution (PM) is a risk factor for the development of atherosclerosis. Whether PM-induced lung and systemic inflammation is involved in this process is not clear. We hypothesized that PM exposure causes lung and systemic inflammation, which in turn leads to vascular endothelial dysfunction, a key step in the initiation and progression of atherosclerosis. New Zealand White rabbits were exposed for 5 days (acute, total dose 8 mg) and 4 wk (chronic, total dose 16 mg) to either PM smaller than 10 mum (PM(10)) or saline intratracheally. Lung inflammation was quantified by morphometry; systemic inflammation was assessed by white blood cell and platelet counts and serum interleukin (IL)-6, nitric oxide, and endothelin levels. Endothelial dysfunction was assessed by vascular response to acetylcholine (ACh) and sodium nitroprusside (SNP). PM(10) exposure increased lung macrophages (P<0.02), macrophages containing particles (P<0.001), and activated macrophages (P<0.006). PM(10) increased serum IL-6 levels in the first 2 wk of exposure (P<0.05) but not in weeks 3 or 4. PM(10) exposure reduced ACh-related relaxation of the carotid artery with both acute and chronic exposure, with no effect on SNP-induced vasodilatation. Serum IL-6 levels correlated with macrophages containing particles (P=0.043) and ACh-induced vasodilatation (P=0.014 at week 1, P=0.021 at week 2). Exposure to PM(10) caused lung and systemic inflammation that were both associated with vascular endothelial dysfunction. This suggests that PM-induced lung and systemic inflammatory responses contribute to the adverse vascular events associated with exposure to air pollution.
BACKGROUND:
Edaravone is widely used for treating ischemic stroke, but it is not still confirmed in intracerebral hemorrhage (ICH) as an ideal medication targeting the brain parenchyma. We aimed to investigate the neuroprotective effects of stereotactic administration of edaravone (SI) into the brain parenchyma.
METHODS:
Intracerebral hemorrhage rat models were established by infusion of collagenase into the caudate nucleus. Neural functional recovery was assessed using modified neurological severity scores (mNSS). A comparative study of therapeutic effects between SI and intraperitoneal injection of edaravone (IP) involved in cerebral edema, blood-brain barrier (BBB) permeability, hematoma absorption, inflammatory response and neuronal apoptosis.
RESULTS:
Compared with IP, the mNSS was significantly (P < 0.05) improved by SI; cerebral edema and BBB permeability were dramatically ameliorated (P < 0.05); IL-4 and IL-10 levels increased, but IL-1β and TNF-α levels significantly decreased; neuron apoptosis decreased markedly (P < 0.05); and caspase-3 and Bax expression significantly dropped, but Bcl-2 increased in SI group (P < 0.05).
CONCLUSION:
SI markedly improved neurological deficits in ICH rat models via antiinflammatory and antiapoptosis mechanisms and promoted M2-type microglia differentiation. SI was effective in rats with collagenase-induced ICH.
© 2016 The Authors. CNS Neuroscience & Therapeutics Published by John Wiley & Sons Ltd.
We used an embryonic-infection model system to show that MVMp, the prototypic minute virus of mice (MVM) serotype and a member of the genus Protoparvovirus, triggers a comprehensive innate immune response in the developing mouse embryo. Direct inoculation of the midtrimester embryo in utero with MVMp results in a widespread, productive infection. During a 96-h infection course, embryonic beta interferon (IFN-β) and IFN-γ transcription were induced 90- and 60-fold, respectively. IFN-β levels correlated with the embryo viral burden, while IFN-γ levels first increased and then decreased. Production of proinflammatory cytokines, interleukin 1β (IL-1β) and tumor necrosis factor alpha (TNF-α), also increased, but by smaller amounts, approximately 7-fold each. We observed increased levels of downstream antiviral effector molecules, PKR and phosphorylated STAT2. Finally, we showed that there is an immune cell response to the virus infection. Infected tissues in the embryo exhibited an increased density of mature leukocytes compared to the same tissues in uninfected embryos. The responses we observed were almost completely restricted to the infected embryos. Uninfected littermates routinely exhibited small increases in innate immune components that rarely reached statistical significance compared to negative controls. Similarly, the placentae of infected embryos did not show any significant increase in transcription of innate immune cytokines. Since the placenta has both embryonic and maternal components, we suggest there is minimal involvement of the dam in the response to infection.
IMPORTANCE:
Interaction between the small single-stranded vertebrate DNA viruses, the protoparvoviruses, and the host innate immune system has been unclear. The issue is important practically given the potential use of these viruses as oncotherapeutic agents. The data reported here stand in contrast to studies of innate immune response during protoparvovirus infection of adult hosts, which invariably reported no or minimal and sporadic induction of an interferon response during infection. We conclude that under conditions of robust and productive MVM infection, a normal murine host is able to mount a significant and broad innate immune response.
Copyright © 2015, American Society for Microbiology. All Rights Reserved.
BACKGROUND:
The pathogenesis of chronic prostatitis/chronic pelvic pain syndrome is unknown and factors including the host's immune response and the nervous system have been attributed to the development of CP/CPPS. We previously demonstrated that mast cells and chemokines such as CCL2 and CCL3 play an important role in mediating prostatitis. Here, we examined the role of neuroinflammation and microglia in the CNS in the development of chronic pelvic pain.
METHODS:
Experimental autoimmune prostatitis (EAP) was induced using a subcutaneous injection of rat prostate antigen. Sacral spinal cord tissue (segments S14-S5) was isolated and utilized for immunofluorescence or QRT-PCR analysis. Tactile allodynia was measured at baseline and at various points during EAP using Von Frey fibers as a function for pelvic pain. EAP mice were treated with minocycline after 30 days of prostatitis to test the efficacy of microglial inhibition on pelvic pain.
RESULTS:
Prostatitis induced the expansion and activation of microglia and the development of inflammation in the spinal cord as determined by increased expression levels of CCL3, IL-1β, Iba1, and ERK1/2 phosphorylation. Microglial activation in mice with prostatitis resulted in increased expression of P2X4R and elevated levels of BDNF, two molecular markers associated with chronic pain. Pharmacological inhibition of microglia alleviated pain in mice with prostatitis and resulted in decreased expression of IL-1β, P2X4R, and BDNF.
CONCLUSION:
Our data show that prostatitis leads to inflammation in the spinal cord and the activation and expansion of microglia, mechanisms that may contribute to the development and maintenance of chronic pelvic pain.
© 2014 Wiley Periodicals, Inc.
BACKGROUND AND OBJECTIVE:
Tetrandrine (TET) is a bisbenzylisoquinoline alkaloid extracted from Stephania tetrandra Moore. Recent studies have suggested that TET can reduce the inflammatory response in microglia, but the mechanisms remain unclear. The aim of this study is to investigate whether TET can inhibit lipopolysaccharide (LPS)-induced microglial activation and clarify its possible mechanisms.
STUDY DESIGN/MATERIALS AND METHODS:
Cell viability assays and cell apoptosis assays were used to determine the working concentrations of TET. Then, BV2 cells were seeded and pretreated with TET for 2 h. LPS was then added and incubated for an additional 24 hours. qRT-PCR and ELISA were used to measure the mRNA or protein levels of IL1β and TNFα. Western blotting was utilized to quantify the expression of CD11b and cell signaling proteins.
RESULTS:
TET at optimal concentrations (0.1 µM, 0.5 µM or 1 µM) did not affect the cell viability. After TET pretreatment, the levels of IL1β and TNFα (both in transcription and translation) were significantly inhibited in a dose-dependent manner. Further studies indicated that phospho-p65, phospho-IKK, and phospho-ERK 1/2 expression were also suppressed by TET.
CONCLUSIONS:
Our results indicate that TET can effectively suppress microglial activation and inhibit the production of IL1β and TNFα by regulating the NF-kB and ERK signaling pathways. Together with our previous studies, we suggest that TET would be a promising candidate to effectively suppress overactivated microglia and alleviate neurodegeneration in glaucoma.
BACKGROUND:
Angiogenesis and macrophage recruitment to the uterus are key features of uterine decidualization; the progesterone-mediated uterine changes that allow for embryo implantation and initiation of pregnancy. In the current study, we characterized the expression of vascular endothelial growth factor receptor-1 (VEGFR-1) in macrophages and endothelial cells of the peri-implantation uterus and determined if VEGFR-1 function is required for decidual angiogenesis, macrophage recruitment, and/or the establishment of pregnancy.
METHODS:
Expression of VEGFR-1 in uterine endothelial cells and macrophages was determined with immunohistochemistry. To assess the effect of continuous VEGFR-1 blockade, adult female mice were given VEGFR-1 blocking antibody, MF-1, every 3 days for 18 days. After 6 doses, females were mated and a final dose of MF-1 was given on embryonic day 3.5. Endothelial cells and macrophages were quantified on embryonic day 7.5. Pregnancy was analyzed on embryonic days 7.5 and 10.5.
RESULTS:
F4/80(+) macrophages are observed throughout the stroma and are abundant adjacent to the endometrial lumen and glands prior to embryo implantation and scatter throughout the decidua post implantation. VEGFR-1 expression is restricted to the uterine endothelial cells. F4/80(+) macrophages were often found adjacent to VEGFR-1(+) endothelial cells in the primary decidual zone. Continuous VEGFR-1 blockade correlates with a significant reduction in decidual vascular and macrophage density, but does not affect embryo implantation or maintenance of pregnancy up to embryonic day 10.5.
CONCLUSIONS:
We found that VEGFR-1 functions in both decidual angiogenesis and macrophage recruitment to the implantation site during pregnancy. VEGFR-1 is expressed by endothelial cells, however blocking VEGFR-1 function in endothelial cells results in reduced macrophage recruitment to the uterus. VEGFR-1 blockade did not compromise the establishment and/or maintenance of pregnancy.
BACKGROUND:
Traumatic brain injury (TBI) initiates a neuroinflammatory cascade that contributes to substantial neuronal damage and behavioral impairment, and Toll-like receptor 4 (TLR4) is an important mediator of thiscascade. In the current study, we tested the hypothesis that curcumin, a phytochemical compound with potent anti-inflammatory properties that is extracted from the rhizome Curcuma longa, alleviates acute inflammatory injury mediated by TLR4 following TBI.
METHODS:
Neurological function, brain water content and cytokine levels were tested in TLR4⁻/⁻ mice subjected to weight-drop contusion injury. Wild-type (WT) mice were injected intraperitoneally with different concentrations of curcumin or vehicle 15 minutes after TBI. At 24 hours post-injury, the activation of microglia/macrophages and TLR4 was detected by immunohistochemistry; neuronal apoptosis was measured by FJB and TUNEL staining; cytokines were assayed by ELISA; and TLR4, MyD88 and NF-κB levels were measured by Western blotting. In vitro, a co-culture system comprised of microglia and neurons was treated with curcumin following lipopolysaccharide (LPS) stimulation. TLR4 expression and morphological activation in microglia and morphological damage to neurons were detected by immunohistochemistry 24 hours post-stimulation.
RESULTS:
The protein expression of TLR4 in pericontusional tissue reached a maximum at 24 hours post-TBI. Compared with WT mice, TLR4⁻/⁻ mice showed attenuated functional impairment, brain edema and cytokine release post-TBI. In addition to improvement in the above aspects, 100 mg/kg curcumin treatment post-TBI significantly reduced the number of TLR4-positive microglia/macrophages as well as inflammatory mediator release and neuronal apoptosis in WT mice. Furthermore, Western blot analysis indicated that the levels of TLR4 and its known downstream effectors (MyD88, and NF-κB) were also decreased after curcumin treatment. Similar outcomes were observed in the microglia and neuron co-culture following treatment with curcumin after LPS stimulation. LPS increased TLR4 immunoreactivity and morphological activation in microglia and increased neuronal apoptosis, whereas curcumin normalized this upregulation. The increased protein levels of TLR4, MyD88 and NF-κB in microglia were attenuated by curcumin treatment.
CONCLUSIONS:
Our results suggest that post-injury, curcumin administration may improve patient outcome by reducing acute activation of microglia/macrophages and neuronal apoptosis through a mechanism involving the TLR4/MyD88/NF-κB signaling pathway in microglia/macrophages in TBI.
BACKGROUND:
Emerging evidence suggests that innate immunity and increased oxidative stress contribute to pathomechanisms in amyotrophic lateral sclerosis (ALS). The aim of the present study was to verify the involvement of monocyte chemoattractant protein-1 (MCP-1) and its specific CC chemokine receptor 2 (CCR2) in the disease progression of ALS. We here demonstrate the expression state of MCP-1 and CCR2 in lumbar spinal cords of mice overexpressing a transgene for G93A mutant human superoxide dismutase 1 (SOD1) (ALS mice) as a mouse model of ALS as well as the involvement of MCP-1/CCR2-mediated signaling in behavior of cultured astrocytes derived from those mice.
RESULTS:
Quantitative polymerase chain reaction analysis revealed that MCP-1 and CCR2 mRNA levels were significantly higher in ALS mice than those in nontransgenic littermates (control mice) at the presymptomatic stage. Immunoblot analysis disclosed a significantly higher CCR2/β-actin optical density ratio in the postsymptomatic ALS mouse group than those in the age-matched control mouse group. Immunohistochemically, MCP-1 determinants were mainly localized in motor neurons, while CCR2 determinants were exclusively localized in reactive astrocytes. Primary cultures of astrocytes derived from ALS mice showed a significant increase in proliferation activity under recombinant murine MCP-1 stimuli as compared to those from control mice.
CONCLUSIONS:
Our results provide in vivo and in vitro evidence that MCP-1 stimulates astrocytes via CCR2 to induce astrocytosis in ALS with SOD1 gene mutation. Thus, it is likely that MCP-1/CCR2-mediated sigaling is involved in the disease progression of ALS.
The TAM receptors Tyro3, Axl and Mertk are receptor tyrosine kinases that dampen host innate immune responses following engagement with their ligands Gas6 and Protein S, which recognize phosphatidylserine on apoptotic cells. In a form of apoptotic mimicry, many enveloped viruses display phosphatidylserine on the outer leaflet of their membranes, enabling TAM receptor activation and downregulation of antiviral responses. Accordingly, we hypothesized that a deficiency of TAM receptors would enhance antiviral responses and protect against viral infection. Unexpectedly, mice lacking Mertk and/or Axl, but not Tyro3, exhibited greater vulnerability to infection with neuroinvasive West Nile and La Crosse encephalitis viruses. This phenotype was associated with increased blood-brain barrier permeability, which enhanced virus entry into and infection of the brain. Activation of Mertk synergized with interferon-β to tighten cell junctions and prevent virus transit across brain microvascular endothelial cells. Because TAM receptors restrict pathogenesis of neuroinvasive viruses, these findings have implications for TAM antagonists that are currently in clinical development.
It is well established that BDNF may enhance oligodendrocyte differentiation following a demyelinating lesion, however, the endogenous sources of BDNF that may be harnessed to reverse deficits associated with such lesions are poorly defined. Here, we investigate roles of astrocytes in synthesizing and releasing BDNF. These cells are known to express BDNF following injury in vivo. In culture, they increase BDNF synthesis and release in response to glutamate metabotropic stimulation. Following cuprizone-elicited demyelination in mice, astrocytes contain BDNF and increase levels of metabotropic receptors. The metabotropic agonist, trans-(1S,3R)-1-amino-1,3-cyclopentanedicarboxylic acid (ACPD), was therefore injected into the demyelinating lesion. Increases in BDNF, as well as myelin proteins, were observed. Effects of ACPD were eliminated by coinjection of trkB-Fc to locally deplete BDNF and by deletion of astrocyte-derived BDNF. The data indicate that astrocyte-derived BDNF may be a source of trophic support that can be used to reverse deficits elicited following demyelination.
Understanding the molecular mechanisms of ultraviolet (UV) induced melanoma formation is becoming crucial with more reported cases each year. Expression of type II nuclear receptor Retinoid-X-Receptor α (RXRα) is lost during melanoma progression in humans. Here, we observed that in mice with melanocyte-specific ablation of RXRα and RXRβ, melanocytes attract fewer IFN-γ secreting immune cells than in wild-type mice following acute UVR exposure, via altered expression of several chemoattractive and chemorepulsive chemokines/cytokines. Reduced IFN-γ in the microenvironment alters UVR-induced apoptosis, and due to this, the survival of surrounding dermal fibroblasts is significantly decreased in mice lacking RXRα/β. Interestingly, post-UVR survival of the melanocytes themselves is enhanced in the absence of RXRα/β. Loss of RXRs α/β specifically in the melanocytes results in an endogenous shift in homeostasis of pro- and anti-apoptotic genes in these cells and enhances their survival compared to the wild type melanocytes. Therefore, RXRs modulate post-UVR survival of dermal fibroblasts in a "non-cell autonomous" manner, underscoring their role in immune surveillance, while independently mediating post-UVR melanocyte survival in a "cell autonomous" manner. Our results emphasize a novel immunomodulatory role of melanocytes in controlling survival of neighboring cell types besides controlling their own, and identifies RXRs as potential targets for therapy against UV induced melanoma.
The nature of the chronic inflammatory component that drives the development of non-alcoholic steatohepatitis (NASH) is unclear and possible inflammatory triggers have not been investigated systematically. We examined the effect of non-metabolic triggers (lipopolysaccharide (LPS), interleukin-1β (IL-1β), administered by slow-release minipumps) and metabolic dietary triggers (carbohydrate, cholesterol) of inflammation on the progression of bland liver steatosis (BS) to NASH. Transgenic APOE3*Leiden.huCETP (APOE3L.CETP) mice fed a high-fat diet (HFD) developed BS after 10 weeks. Then, inflammatory triggers were superimposed or not (control) for six more weeks. Mouse livers were analyzed with particular emphasis on hallmarks of inflammation which were defined in human liver biopsies with and without NASH. Livers of HFD-treated control mice remained steatotic and did not progress to NASH. All four inflammatory triggers activated hepatic nuclear factor-κB (NF-κB) significantly and comparably (≥5-fold). However, HFD+LPS or HFD+IL-1β did not induce a NASH-like phenotype and caused intrahepatic accumulation of almost exclusively mononuclear cells. By contrast, mice treated with metabolic triggers developed NASH, characterized by enhanced steatosis, hepatocellular hypertrophy, and formation of mixed-type inflammatory foci containing myeloperoxidase-positive granulocytes (neutrophils) as well as mononuclear cells, essentially as observed in human NASH. Specific for the metabolic inducers was an activation of the proinflammatory transcription factor activator protein-1 (AP-1), neutrophil infiltration, and induction of risk factors associated with human NASH, that is, dyslipidemia (by cholesterol) and insulin resistance (by carbohydrate). In conclusion, HFD feeding followed by NF-κB activation per se (LPS, IL-1β) does not promote the transition from BS to NASH. HFD feeding followed by metabolically evoked inflammation induces additional inflammatory components (neutrophils, AP-1 pathway) and causes NASH.
Sarm1 is the fifth Toll/IL-1 receptor (TIR) domain-containing adaptor protein identified to regulate TLR downstream signaling. Unlike the other TIR domain-containing adaptor proteins, Sarm1 is predominantly expressed in the brain. Our previous study indicated that Sarm1 regulates dendritic growth, axonal extension and neuronal polarity. Here, we investigated whether Sarm1 is involved in innate immunity in the brain. First, regional and cell-type distribution of Sarm1 in mouse brains was revealed using double immunostaining. Sarm1 was widely distributed in different regions of brains, including the cerebral cortex, hippocampus, amygdala, cerebellum and midbrain. Moreover, Sarm1 is present in both projection and inhibitory neurons, but, interestingly, not in microglial cells--the main immune cells in the brain. These results suggest that Sarm1 is unlikely to regulate microglial activity in a cell-autonomous manner. However, compared with wild type littermates, the RNA expression levels of several inflammatory and antiviral cytokines were altered in the embryonic and adult brains of Sarm1 knockdown transgenic mice. These data imply that Sarm1 influences cytokine expression in neurons. In conclusion, our findings suggest that Sarm1 regulates the innate immune responses of the central nervous system through regulating the inflammatory and anti-virus cytokines produced by neurons.
Inflammation and angiogenesis are integral parts of wound healing. However, excessive and persistent wound-induced inflammation and angiogenesis in an avascular tissue such as the cornea may be associated with scarring and visual impairment. Junctional adhesion molecule A (Jam-A) is a tight junction protein that regulates leukocyte transmigration as well as fibroblast growth factor-2 (FGF-2)-induced angiogenesis. However its function in wound-induced inflammation and angiogenesis is still unknown. In this study, we report spontaneous corneal opacity in Jam-A deficient mice associated with inflammation, angiogenesis and the presence of myofibroblasts. Since wounds and/or corneal infections cause corneal opacities, we tested the role of Jam-A in wound-induced inflammation, angiogenesis and scarring by subjecting Jam-A deficient mice to full thickness corneal wounding. Analysis of these wounds demonstrated increased inflammation, angiogenesis, and increased number of myofibroblasts thereby indicating that Jam-A regulates the wound-healing response by controlling wound-induced inflammation, angiogenesis and scarring in the cornea. These effects were not due to inflammation alone since the inflammation-induced wound-healing response in Jam-A deficient mice was similar to wild type mice. In order to determine the molecular mechanism associated with the observed aberrant corneal wound healing in Jam-A deficient mice, we assessed the expression of the components of vascular endothelial growth factor A (VEGF-A)/vascular endothelial growth factor receptor- 2(VEGFR-2) signaling pathway. Interestingly, we observed increased levels of VEGF-A mRNA in Jam-A deficient eyes. We also observed nuclear localization of phosphorylated SMAD3 (pSMAD3) indicative of TGFβ pathway activation in the Jam-A deficient eyes. Furthermore the increased wound-induced corneal inflammation, angiogenesis, and scarring in Jam-A deficient mice was attenuated by treatment with DC101, an anti-vascular endothelial growth factor receptor-2 (VEGFR-2) antibody. Our results suggest that in the absence of Jam-A, the VEGF-A/VEGFR-2 pathway is upregulated, thereby augmenting wound induced corneal inflammation, angiogenesis, and myofibroblast accumulation leading to scarring.
Stimulation and recording of the in vivo electrical activity of neurons are critical functions in contemporary biomedical research and in treatment of patients with neurological disorders. The electrodes presently in use tend to exhibit short effective lifespans due to degradation of signal transmission resulting from the tissue response at the electrode-brain interface, with signal throughput suffering most at the low frequencies relevant for biosignals. To overcome these limitations, new electrode designs to minimize tissue responses, including conducting polymers (CPs) have been explored. Here, we report the short-term histocompatibility and signal throughput results comparing platinum and CP-modified platinum electrodes in a Sprague-Dawley rat model. Two of the polymers tested elicited significantly decreased astrocyte responses relative to platinum. These polymers also showed improved signal throughput at low frequencies and comparable signal-to-noise ratios during targeted intracranial electroencephalograms. These results suggest that CP electrodes may present viable alternatives to the metal electrodes that are currently in use.
GH deficiency has been found in subjects with amyotrophic lateral sclerosis (ALS). Disrupted endocrine function could contribute to the progressive muscle loss and hypermetabolism seen in ALS. It is not possible to study all the elements of the GH-IGF-I axis in ALS patients. Consequently, it remains unclear whether dysfunctional GH secretion contributes to disease pathogenesis and why GH and IGF-I directed treatment strategies are ineffective in human ALS. The hSOD1(G93A) transgenic mouse model is useful for the detailed investigation of the pathogenesis of ALS. We report that symptomatic male hSOD1(G93A) transgenic mice exhibit a deficiency in GH secretion similar to that seen in human ALS. Further characterization of the GH-IGF-I axis in hSOD1(G93A) mice reveals central and peripheral abnormalities that are not found in wild-type age-matched controls. Specifically, we observe aberrant endogenous pulsatile GH secretion, reduced pituitary GH content, and decreased circulating levels of IGF-I, indicating global GH deficiency in hSOD1(G93A) mice. Furthermore, a reduction in the expression of the IGF-I receptor α-subunit in skeletal muscle and lumbar spinal cords of hSOD1(G93A) mice suggests impaired IGF-I signaling within these tissues. This is the first account of disrupted GH secretion in a transgenic mouse model of ALS. These observations are essential for the development of effective GH and IGF-I targeted therapies in ALS.
An imbalance between free radical generation and radical scavenging antioxidant systems results in oxidative stress, which has been associated with cell injury observed in many age-related diseases. The superoxide dismutase (SOD) family is a major antioxidant system, and deficiency of Cu,Zn-superoxide dismutase-1 (Sod1) in mice leads to many different phenotypes that resemble accelerated aging. In this study we examined the morphologic features and the secretory functions of the lacrimal glands in Sod1(-/-) mice. Lacrimal glands showed atrophy of acinar units; fibrosis; infiltration with CD4(+) T cells, monocytes, and neutrophils; increased staining with both 4-hydroxy-2-nonenal and 8-hydroxy-2'-deoxyguanosine; increases in apoptotic cells; and the presence of the epithelial-mesenchymal transition in senescent Sod1(-/-) mice. Electron microscopy findings revealed evidence of epithelial-mesenchymal transition, presence of swollen and degenerated mitochondria, and the presence of apoptotic cell death in the lacrimal glands of senescent Sod1(-/-) mice. These alterations were also associated with the accumulation of secretory vesicles in acinar epithelial cells, decreased production of both stimulated and nonstimulated tears, and a decline in total protein secretion from the lacrimal glands. Our results suggest that Sod1(-/-) mice may be a good model system in which to study the mechanism of reactive oxygen species-mediated lacrimal gland alterations.
A large population of perivascular cells was found to be present in the area of the blood-labyrinth barrier in the stria vascularis of normal adult cochlea. The cells were identified as perivascular resident macrophages (PVMs), as they were positive for several macrophage surface molecules including F4/80, CD68, and CD11b. The macrophages, which were closely associated with microvessels and structurally intertwined with endothelial cells and pericytes, constitutively expressed scavenger receptor classes A(1) and B(1) and accumulated blood-borne proteins such as horseradish peroxidase and acetylated low-density lipoprotein. The PVMs were demonstrated to proliferate slowly, as evidenced by the absence of 5-bromo-2-deoxyuridine (BrdU)-positive PVMs at 3-14 days in normal mice injected with BrdU. However, in irradiated mice, the majority of the PVMs turned over via bone-marrow-cell migration within a 10-month time-frame. The existence of PVMs in the vascular wall of the blood-labyrinth barrier might therefore serve as a source for progenitor cells for postnatal vasculogenesis and might contribute to the repair of damaged vessels in the context of a local inflammatory response.
Mouse Mac-1, a complement receptor-associated surface structure on macrophages, and LFA-1, a function-associated structure on lymphocytes, comprise a novel family of leukocyte differentiation antigens participating in adhesive cell interactions. Mac-1 and LFA-1 contain alpha-subunits of 170,000 and 180,000 Mr, respectively, and beta-subunits of 95,000 Mr noncovalently associated in alpha 1 beta 1 complexes. The structural relation between the alpha- and between the beta-subunits, and the location of functionally important sites on the molecules, have been probed with antibodies. Both non-cross-reactive and cross-reactive monoclonal antibodies (MAb) and antisera prepared to the purified molecules or the LFA-1 alpha-subunits were used. Reactivity with individual subunits was studied by immunoprecipitation after dissociation induced by high pH treatment, or by immunoblotting after SDS-PAGE. Cross-reactive epitopes on Mac-1 and LFA-1 were found to be present on the beta-subunits, which were immunologically identical. Non-cross-reactive epitopes that are distinctive for Mac-1 or LFA-1 were localized to the alpha-subunits. MAb to LFA-1 alpha-subunit epitopes inhibited CTL-mediated killing. Two MAb to Mac-1 alpha-subunit epitopes but not a third MAb to a spatially distinct alpha-epitope inhibited complement receptor function. Neither function was inhibited by a MAb binding to a common beta-subunit epitope. Therefore, sites of Mac-1 and LFA-1 involved in their respective adhesion-related functions, as well as distinctive structural features, have been localized to the alpha-subunits.
PURPOSE:
The treatment of cancer with oncolytic viruses primarily depends on the selective viral replication in cancer cells. However, a replication-incompetent hemagglutinating virus of Japan (HVJ; Sendai virus) envelope (HVJ-E) suppresses the growth of human cancer cells as effectively as replication-competent live HVJ without producing toxic effects in nonmalignant cells. Here, we analyze the molecular mechanism of the oncolytic activity of HVJ-E.
EXPERIMENTAL DESIGN:
The molecules responsible for HVJ-E-induced cancer cell death were elucidated in prostate cancer cell lines, and the effect of HVJ-E on orthotopic prostate cancers was evaluated in nonobese diabetic-severe combined immunodeficient (NOD-SCID) mice.
RESULTS:
The liposome-mediated transfer of viral RNA genome fragments from HVJ-E suppressed the viability of prostate cancer cells but not the viability of the noncancerous prostate epithelium. Knockdown experiments using siRNAs showed that the cancer cell-selective killing induced by HVJ-E was mediated by retinoic acid-inducible gene I (RIG-I) and mitochondrial antiviral signaling protein (MAVS). Downstream of the RIG-I/MAVS pathway, both TNF-related apoptosis-inducing ligand (TRAIL) and Noxa were upregulated by HVJ-E in the castration-resistant prostate cancer cell line PC3 but not in the noncancerous prostate epithelial cell line PNT2. TRAIL siRNA but not Noxa siRNA significantly inhibited HVJ-E-induced cell death in PC3 cells. However, Noxa siRNA effectively suppressed HVJ-E-induced cell death in DU145 cells, another castration-resistant prostate cancer cell line, in which Noxa but not TRAIL was upregulated by HVJ-E. Furthermore, the orthotopic prostate cancers were dramatically eradicated in immunodeficient mice injected with HVJ-E.
CONCLUSION:
The RIG-I/MAVS signaling pathway represents an attractive target for cancer therapy.
©2012 AACR.
OBJECTIVE:
The residence time of hyaluronan (HA) in knee joint synovial fluid (SF) was investigated using a rabbit anterior cruciate ligament transection (ACLT) model. The aims of this study were to assess, at 7 and 28 days after surgery, the 1) HA concentration and molecular mass (M(r) ) distribution in the SF, 2) endogenous replenishment of HA after saline washout, 3) HA residence times in the SF, and 4) synovium and subsynovium cellularity of the knee joints of rabbits subjected to ACLT, compared to sham-operated and nonoperated control joints.
METHODS:
Adult NZW rabbits underwent ACLT or sham surgery on one hind limb, while each contralateral limb was the nonoperated control. On day 7 or 28 after surgery, the joints were aspirated for SF, lavaged with saline, and injected with saline or polydisperse HA, and samples were obtained for analysis at set time points up to 8 hours after injection. Joint fluid samples were analyzed for the concentration and M(r) distribution of HA to calculate the HA residence time constant.
RESULTS:
Analysis of HA concentrations and M(r) distributions showed 1) loss of high-M(r) HA in the SF on day 7 and a shift toward a lower-M(r) distribution on day 28, 2) endogenous replenishment of high-M(r) HA after washout, and 3) M(r) -dependent loss of HA from the knee joints after ACLT, particularly on day 7 postsurgery. The HA residence time decreased with decreasing HA M(r) (residence time ∼27 hours with an M(r) load of 7,000-2,500 kd, to ∼7 hours with an M(r) load of 250-50 kd). HA residence time also decreased (by ∼70%) in the knee joints on day 7 after ACLT. The subsynovium of the joints subjected to ACLT displayed increased cellularity and neovascularization on days 7 and 28 postsurgery.
CONCLUSION:
The residence time of HA in the SF is transiently decreased after ACLT, suggesting that a biophysical transport mechanism is responsible for the altered composition of the SF after joint injury or during inflammation.
Copyright © 2012 by the American College of Rheumatology.