Unconjugated
The role of different receptors in natural-killer- (NK-) cell-mediated cytotoxicity against multiple myeloma (MM) cells is unknown. We investigated if an enhancement of NK-cell-mediated cytotoxicity against MM could be reached by blocking of the inhibitory leukocyte immunoglobulin-like receptor 1 (LIR-1). Our investigations revealed high levels of LIR-1 expression not only on the NK cell line NK-92, but also on myeloma cells (MOLP-8, RPMI8226) as well as on a lymphoblastoid cell line (LBCL; IM-9). Subsequent cytotoxicity assays were designed to show the isolated effects of LIR-1 blocking on either the effector or the tumor side to rule out receptor-receptor interactions. Although NK-92 was shown to be capable of myeloma cell lysis, inhibition of LIR-1 on NK-92 did not enhance cytotoxicity. Targeting the receptor on MM and LBCL did not also alter NK-92-mediated lysis. We come to the conclusion that LIR-1 alone does not directly influence NK-cell-mediated cytotoxicity against myeloma. To our knowledge, this work provides the first investigation of the inhibitory capability of LIR-1 in NK-92-mediated cytotoxicity against MM and the first functional evaluation of LIR-1 on MM and LBCL.
Although replete with cytotoxic machinery, uterine NK (uNK) cells remain tolerant at the maternal-fetal interface. The mechanisms that facilitate the uNK cell tolerance are largely unknown. In this study, we demonstrate that vascular endothelial growth factor (VEGF) C, a proangiogenic factor produced by uNK cells, is responsible for their noncytotoxic activity. VEGF C-producing uNK cells support endovascular processes as demonstrated in a three-dimensional coculture model of capillary tube formation on Matrigel. Peripheral blood NK cells fail to produce VEGF C and remain cytotoxic. This response can be reversed by exogenous VEGF C. We show that cytoprotection by VEGF C can be related to induction of the TAP-1 expression and MHC class I assembly in target cells. Small interfering RNA-mediated silencing of TAP-1 expression abolished the VEGF C-imparted protection. Overall, these results demonstrate that empowerment of uNK cells with angiogenic factors keeps them noncytotoxic. This phenotype is critical to their pregnancy-compatible immunovascular role during placentation and fetal development.