Unconjugated
Medulloblastoma (MB) is the most common pediatric malignant brain tumor and patients with high-risk or recurrent MB respond poorly to current therapies, and have a higher related mortality. For this reason, potential molecules related to MB need be identified in order to develop targets for the development of novel therapeutics. In the present study, we compared MB microarray data obtained using different microarray systems and significant targets were selected by gene annotation and enrichment analysis. Genes for soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) annotated with the function 'vesicle' were identified and one of these proteins, synaptosomal-associated protein 25 (SNAP25), was found to have significantly lower expression levels in MB. In addition, SNAP25 was detected in a very low number of MB cells as shown by western blot analysis and immunohistochemical analyses of archived and formalin-fixed/paraffin-embedded human MB specimens. We found that SNAP25 altered the morphology and the chemotherapeutic effects of arabinofuranosyl cytidine (Ara-C) on SNAP25-expressing MB cells. On the whole, our data indicate that the expression of SNAP25 is crucial for dendrite formation and is associated with the effects of targeted chemotherapy. The detection of SNAP25 expression in MB cells may thus be essential for the chemotherapeutic application of Ara-C.
Bone marrow-derived cells have important roles in cancer development and progression. Our previous studies demonstrated that murine bone marrow-derived myofibroblasts (BMFs) enhanced tumor growth. In this study, we investigated the mechanisms of BMF actions. We found that co-injection of BMFs with gastric cancer cells markedly promoted tumorigenesis. Co-cultured BMFs or BMF-conditioned medium (BMF-CM) induced the formation of spheres, which expressed stem cell signatures and exhibited features of self-renewal, epithelial-to-mesenchymal transition and tumor initiation. Furthermore, CD44+ fractions in spheres were able to initiate tumorigenesis and re-establish tumors in serially passaged xenografts. In co-culture systems, BMFs secreted high levels of murine interleukin-6 (IL-6) and hepatocyte growth factor (HGF), whereas cancer cells produced high level of transformation growth factor-β1 (TGF-β1). BMF-CM and IL-6 activated BMFs to produce mHGF, which activated signal transducer and activator of transcription 3 (STAT3) and upregulated TGF-β1 in human cancer cells. In return, cancer cell-CM stimulated BMFs to produce IL-6, which was inhibited by anti-TGF-β1 neutralizing antibody. Blockade of HGF/Met, Janus kinase 2 (JAK2)/STAT3 and TGF-β1 signaling by specific inhibitors inhibited BMF-induced sphere formation. STAT3 knockdown in cancer cells also inhibited BMF-induced sphere formation and tumorigenesis. Moreover, TGF-β1 overexpression in cancer cells was co-related with IL-6 and HGF overexpression in stromal cells in human gastric cancer tissues. Our results show that BMF-derived IL-6/HGF and cancer cell-derived TGF-β1 mediate the interactions between BMFs and gastric cancer cells, which regulate cancer stemness and promote tumorigenesis. Targeting inhibition of the interactions between BMFs and cancer cells may be a new strategy for cancer therapy.