Unconjugated
The present study aimed to identify, express and purify an immunogenic fragment in the ectodomain of prostate-specific membrane antigen (PSMA) within a fusion protein. The PSMA amino acid sequence published in National Center for Biotechnology Information GenBank was used to determine sequence homology and immunogenic index analyses, additionally using BLASTN, Protean and ExPASy software to predict the polypeptide sequences of immunogenic epitopes. The gene sequence encoding the ectodomain of the polypeptide immunogenic fragments, containing the identified immunogenic epitopes, was generated using whole-gene synthesis. Prokaryotic expression vector pET-32a-r-ectodomain-PSMA was constructed and the recombinant plasmids were transformed into competent BL21 (DE3) Escherichia coli, which was followed by induction of recombinant protein expression using isopropyl-β-D-thiogalactopyranoside. Fusion proteins were isolated and purified using affinity chromatography and their immune activity was subsequently investigated using western blot analysis. Purified protein was used to immunize BALB/c mice in order to generate polyclonal antibodies, and the binding of polyclonal antibodies to prostate cancer cell lines in vitro was evaluated using flow cytometry. A total of 3 polypeptide fragments with high specificity were identified following analysis using numerous software packages, and the gene sequences encoding regions containing the 2 most immunogenic fragments were synthesized and successfully inserted into the prokaryotic expression vector pET-32a-r-ectodomain-PSMA. The recombinant PSMA protein fragment had a molecular weight of ~50 kDa and 95% purity. Western blot analysis revealed that the r-ectodomain-PSMA fusion protein specifically bound to the anti-PSMA ectodomain monoclonal antibody. Flow cytometry demonstrated that polyclonal antibodies raised against these recombinant proteins could specifically bind to PSMA-positive LNCaP cells, but not to PSMA-negative PC-3 cells. An immunogenic fragment in the ectodomain of PSMA was successfully expressed and purified. The present study, therefore, provides a basis for the preparation of an anti-PSMA small humanized monoclonal antibody.
Specific and efficient delivery of siRNA into intended tumor cells remains as a challenge, even though RNAi has been exploited as a new strategy for prostate cancer therapy. This work aims to address both specificity and efficiency of SURVIVIN-siRNA delivery by constructing a therapeutic complex using combinatorial strategies. A fusion protein STD was first expressed to serve as a backbone, consisting of streptavidin, a cell-penetrating peptide called Trans-Activator of Transcription (TAT) and a double-stranded RNA binding domain. A biotinylated Prostate Specific Membrane Antigen (PSMA) specific aptamer A10 and SURVIVIN-siRNA were then linked to STD protein to form the therapeutic complex. This complex could specifically targeted PSMA(+) tumor cells. Compared to lipofectamine and A10-siRNA chimera, it demonstrated higher efficiency in delivering siRNA into target cells by 19.2% and 59.9%, and increased apoptosis by 16.8% and 26.1% respectively. Upon systemic administration, this complex also showed significant efficacy in suppressing tumor growth in athymic mice (p <0.001). We conclude that this therapeutic complex could specifically and efficiently deliver SURVIVIN-siRNA to target cells and suppressed tumor growth in vivo, which indicates its potential to be used as a new strategy in prostate cancer therapy.