Unconjugated
Integrin receptors, a large family of adhesion receptors, are involved in the attachment of Klebsiella pneumoniae to respiratory epithelial cells, and subsequently cause the internalization of K. pneumoniae by host cells. Although a number of molecules have been reported to regulate the expression and activity of integrin receptors in respiratory epithelial cells, the specific underlying molecular mechanisms remain largely unknown. High mobility group nucleosomal binding domain 2 (HMGN2), a non-histone nuclear protein, is present in eukaryotic cells as a ubiquitous nuclear protein. Our previous studies have demonstrated that HMGN2 affects chromatin function and modulates the expression of antibacterial peptide in A549 cells exposed to lipopolysaccharide, which indicates the critical role of HMGN2 in innate immune responses. In addition, our cDNA microarray analysis suggested that HMGN2 knockdown induced the enhanced expression of a5ß1 integrin in A549 cells. Therefore, we hypothesized that intercellular HMGN2 may mediate the internalization of K. pneumoniae by altering the expression of a5ß1 integrin. Using the A549 cell line, we demonstrated that HMGN2 knockdown induced the increased expression of a5ß1 integrin on cell membranes, which resulted in a significant increase in K. pneumoniae internalization. Further results revealed that HMGN2 silencing induced the expression of talin and the activation of a5ß1 integrin, which led to actin polymerization following the phosphorylation of FAK and Src. This study suggests a possible therapeutic application for bacterial internalization by targeting HMGN2 in order to treat K. pneumoniae infection.
TGF-beta 1 regulates cell growth, differentiation, and adhesion and is a potent immunosuppressant, in part through its well-recognized growth-inhibitory effects. However, certain T cell subsets, particularly of naive phenotype, can instead be costimulated to proliferate by TGF-beta 1. We have previously demonstrated that naive murine CD8+ T cells, TCR activated by platebound anti-CD3 Ab or SEB superantigen, are growth stimulated by TGF-beta 1, acquire a memory phenotype, express elevated IL-10 and TGF-beta 1, and cause T cell growth inhibition as effector CD8+ T cells. TGF-beta 1 causes growth among certain nonlymphoid cells in part by inducing or mimicking integrin activation. The present studies thus addressed mediation of TGF-beta 1-dependent growth and survival of anti-CD3-triggered CD8+ T cells via beta 1 integrins. TGF-beta 1 reduced anti-CD3-activated alpha 4 beta 1 integrin expression and constitutive adhesion to fibronectin, while initial alpha 5 beta 1 expression was heightened and adhesive function sustained. Fibronectin-based RGD peptides that bind alpha 5 beta 1 integrins and alpha 5 or beta 1 integrin chain-specific Abs blocked TGF-beta 1-dependent proliferation, while connecting segment-1 peptide that binds alpha 4 beta 1 integrin and alpha 4 chain-specific Abs had no effect. Cross-linked alpha 5- but not alpha 4-specific Ab mimicked TGF-beta 1 function by costimulating CD8+ T cell growth. TGF-beta 1 also caused RGD peptide-sensitive CD8+ T cell aggregation. Additionally, TGF-beta 1-costimulated proliferation correlated with TGF-beta 1 protection of CD8+ T cells from anti-CD3-induced apoptosis. RGD peptides and alpha 5 integrin-specific Ab abolished TGF-beta 1 prevention of activation-induced apoptosis. Therefore, TGF-beta 1 costimulates CD8+ T cell growth via activation of the alpha 5 beta 1 integrin and/or its ligand and supports sustained growth at least in part by alpha 5 beta 1-mediated protection from activation-induced apoptosis.