Unconjugated
Earlier, we reported that CTLA4 expression is inversely correlated with CD38 expression in chronic lymphocytic leukemia (CLL) cells. However, the specific role of CTLA4 in CLL pathogenesis remains unknown. Therefore, to elucidate the possible role of CTLA4 in CLL pathogenesis, CTLA4 was down-regulated in primary CLL cells. We then evaluated proliferation/survival in these cells using MTT, (3)H-thymidine uptake and Annexin-V apoptosis assays. We also measured expression levels of downstream molecules involved in B-cell proliferation/survival signaling including STAT1, NFATC2, c-Fos, c-Myc, and Bcl-2 using microarray, PCR, western blotting analyses, and a stromal cell culture system. CLL cells with CTLA4 down-regulation demonstrated a significant increase in proliferation and survival along with an increased expression of STAT1, STAT1 phosphorylation, NFATC2, c-Fos phosphorylation, c-Myc, Ki-67 and Bcl-2 molecules. In addition, compared to controls, the CTLA4-downregulated CLL cells showed a decreased frequency of apoptosis, which also correlated with increased expression of Bcl-2. Interestingly, CLL cells from lymph node and CLL cells co-cultured on stroma expressed lower levels of CTLA4 and higher levels of c-Fos, c-Myc, and Bcl-2 compared to CLL control cells. These results indicate that microenvironment-controlled-CTLA4 expression mediates proliferation/survival of CLL cells by regulating the expression/activation of STAT1, NFATC2, c-Fos, c-Myc, and/or Bcl-2.
Psoriasis is a complex disease with an expanding definition of its pathological features. We sought to expand/refine the psoriasis transcriptome using 85 paired lesional and non-lesional samples from a cohort of patients with moderate-to-severe psoriasis vulgaris who were not receiving active psoriasis therapy. This new analysis identified 4,175 probe sets (representing 2,725 unique known genes) as being differentially expressed in psoriasis lesions compared with matched biopsies of non-lesional skin when the following criteria were applied: >2-fold change and false discovery rate <0.05. These probe sets represent the largest and most comprehensive set of genes defining psoriasis at the molecular level and within the previously unidentified genes, a link to functional pathways associated with metabolic diseases/diabetes and to cardiovascular risk pathways is identified. In addition, we profiled the serum of moderate-to-severe psoriatics compared with healthy controls to assess the overlap of overexpressed lesional genes with overexpressed systemic proteins. We identified linkage of functional pathways in lesional skin associated with metabolic diseases/diabetes and cardiovascular risk with those pathways overexpressed in the serum, suggesting a potential linkage between altered gene transcription in the skin and comorbidities commonly seen in patients with moderate-to-severe psoriasis.