Unconjugated
Culture conditions play an important role in regulating the genomic integrity of Human Pluripotent Stem Cells (HPSCs). We report that HPSCs cultured in Essential 8 (E8) and mTeSR, two widely used media for feeder-free culturing of HPSCs, had many fold higher levels of ROS and higher mitochondrial potential than cells cultured in Knockout Serum Replacement containing media (KSR). HPSCs also exhibited increased levels of 8-hydroxyguanosine, phospho-histone-H2a.X and p53, as well as increased sensitivity to ?-irradiation in these two media. HPSCs in E8 and mTeSR had increased incidence of changes in their DNA sequence, indicating genotoxic stress, in addition to changes in nucleolar morphology and number. Addition of antioxidants to E8 and mTeSR provided only partial rescue. Our results suggest that it is essential to determine cellular ROS levels in addition to currently used criteria i.e. pluripotency markers, differentiation into all three germ layers and normal karyotype through multiple passages, in designing culture media.
Non-alcoholic fatty liver disease (NAFLD) is a prevalent obesity-related disease that affects large populations throughout the world due to excessive calorie intake and an increasingly sedentary lifestyle. Fibroblast growth factor 21 (FGF21) has recently emerged as a promising therapeutic candidate for the treatment of obesity and diabetes. FGF21 is a starvation-induced pleiotropic hormone with various beneficial metabolic effects, and pharmacological treatment in rodents has been shown to improve insulin sensitivity and decrease simple fatty liver disease. However, its effects on reversing the symptoms of advanced liver disease have yet to be validated. Here, we investigated the protective effects of the LY2405319 compound, an engineered FGF21 variant, in a non-alcoholic steatohepatitis (NASH) model using leptin-deficient ob/ob mice and a methionine- and choline-deficient (MCD) diet to induce steatohepatitis. LY2405319 treatment in ob/ob mice corroborated previous results showing that improvements in the metabolic parameters were due to increased mitochondrial oxygen consumption rate and fatty acid oxidation. LY2405319 treatment in ob/ob mice on an MCD diet significantly reduced the symptoms of steatohepatitis, as confirmed by Masson's trichrome staining intensity. Serum levels of AST and ALT were also reduced, suggesting an attenuation of liver injury, while detection of inflammatory markers showed decreased mRNA expression of TGF-ß1 and type-I collagen, and decreased phosphorylation of NF-kB p65, JNK1/2, and p38. Collectively, these data show that LY2405319 treatment attenuated MCD diet-induced NASH progression. We propose that the LY2405319 compound is a potential therapeutic candidate for the treatment of advanced liver disease.
The longevity gene klotho has numerous physiological functions, such as regulating calcium and phosphorus levels, delaying senescence, improving cognition, reducing oxidative stress, and protecting vascular endothelial cells. This study tested whether 2,3,5,4'-Tetrahydroxystilbene-2-O-ß-D-glucoside (THSG), a small molecule with antiaging effects, regulates the expression and physiological effects of klotho. Our results showed that THSG dose-dependently increased the luciferase reporter activity of the klotho gene, reversed the decrease in mRNA and protein expression of klotho which was induced by angiotensin II in NRK-52E renal tubular epithelial cells, and increased klotho mRNA expression in the cerebral cortex, hippocampus, testis, and kidney medulla of spontaneously hypertensive rats. THSG also reduced the number of senescent cells induced by angiotensin II and improved the antioxidant capacity and enhanced the bone strength in vivo. Based on klotho's role in promoting cognition, regulating bone metabolism, and improving renal function, the effect of THSG on klotho expression will be beneficial to the functional improvement or enhancement of the expressed organs or tissues.
Acrolein (Acr) is a potent cytotoxic and DNA damaging agent which is ubiquitous in the environment and abundant in tobacco smoke. Acr is also an active cytotoxic metabolite of the anti-cancer drugs cyclophosphamide and ifosfamide. The mechanisms via which Acr exerts its anti-cancer activity and cytotoxicity are not clear. In this study, we found that Acr induces cytotoxicity and cell death in human cancer cells with different activities of p53. Acr preferentially binds nucleolar ribosomal DNA (rDNA) to form Acr-deoxyguanosine adducts, and induces oxidative damage to both rDNA and ribosomal RNA (rRNA). Acr triggers ribosomal stress responses, inhibits rRNA synthesis, reduces RNA polymerase I binding to the promoter of rRNA gene, disrupts nucleolar integrity, and impairs ribosome biogenesis and polysome formation. Acr causes an increase in MDM2 levels and phosphorylation of MDM2 in A549 and HeLa cells which are p53 active and p53 inactive, respectively. It enhances the binding of ribosomal protein RPL11 to MDM2 and reduces the binding of p53 and E2F-1 to MDM2 resulting in stabilization/activation of p53 in A549 cells and degradation of E2F-1 in A549 and HeLa cells. We propose that Acr induces ribosomal stress which leads to activation of MDM2 and RPL11-MDM2 binding, consequently, activates p53 and enhances E2F-1 degradation, and that taken together these two processes induce apoptosis and cell death.
Ovarian aging is a long-term and complex process associated with a decrease in follicular quantity and quality. The damaging effects of reactive oxygen species (ROS) in ovarian aging and ovarian aging-associated disorders have received relatively little attention. Thus, we assessed if the oxidative stress induced by long-term (defined by the Environmental Protection Agency as at least 30 days in duration) moderate ozone inhalation reduced ovarian reserves, decreased ovarian function and induced ovarian aging-associated disorders. The expression of oxidative stress markers and antioxidant enzymes was used to determine the degree of oxidative stress. Ultrastructural changes in ovarian cells were examined via electron microscopy. The ovarian reserve was assessed by measuring multiple parameters, such as the size of the primordial follicle pool and anti-Müllerian hormone (AMH) expression. The estrous cycle, hormone levels and fertility status were investigated to assess ovarian function. To investigate ovarian aging-associated disorders, we utilized bone density and cardiovascular ultrasonography in mice. The levels of oxidized metabolites, such as 8-hydroxy-2´-deoxyguanosine (8-OHdG), 4-hydroxynonenal (4-HNE) and nitrotyrosine (NTY), significantly increased in ovarian cells in response to increased oxidative stress. The ultrastructural analysis indicated that lipid droplet formation and the proportion of mitochondria with damaged membranes in granulosa cells were markedly increased in ozone-exposed mice when compared with the control group. Ozone exposure did not change the size of the primordial follicle pool or anti-Müllerian hormone (AMH) expression. The estrogen concentration remained normal; however, progesterone and testosterone levels decreased. The mice exposed to ozone inhalation exhibited a substantial decrease in fertility and fecundity. No differences were revealed by the bone density or cardiovascular ultrasounds. These findings suggest that the decreased female reproductive function caused by long-term moderate oxidative damage may be due to a decrease in follicle quality and progesterone production.
Mechanical loading on pelvic supports contributes to pelvic organ prolapse (POP). However, the underlying mechanisms remain to be elucidated. Our previous study identified that mechanical strain induced oxidative stress (OS) and promoted apoptosis and senescence in pelvic support fibroblasts. The aim of the present study is to investigate the molecular signaling pathway linking mechanical force with POP. Using a four-point bending device, human uterosacral ligament fibroblasts (hUSLF) were exposed to mechanical tensile strain at a frequency of 0.3 Hz and intensity of 5333 µe, in the presence or absence of LY294002. The applied mechanical strain on hUSLF resulted in apoptosis and senescence, and decreased expression of procollagen type I a1. Mechanical strain activated phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/Akt signaling and resulted in downregulated expression of glutathione peroxidase 1 and Mn-superoxide dismutase, and accumulation of intracellular reactive oxygen species. These effects were blocked by administration of LY294002. Furthermore, it was demonstrated that PI3K/Akt was activated in the uterosacral ligaments of POP patients, and that OS was increased and collagen type I production reduced. The results from the present study suggest that mechanical strain promotes apoptosis and senescence, and reduces collagen type I production via activation of PI3K/Akt-mediated OS signaling pathway in hUSLF. This process may be involved in the pathogenesis of POP as it results in relaxation and dysfunction of pelvic supports.
Pelvic organ prolapse (POP) is a global health problem, for which the pathophysiological mechanism remains to be fully elucidated. The loss of extracellular matrix protein has been considered to be the most important molecular basis facilitating the development of POP. Oxidative stress (OS) is a well-recognized mechanism involved in fiber metabolic disorders. The present study aimed to clarify whether OS exists in the uterosacral ligament (USL) with POP, and to investigate the precise role of OS in collagen metabolism in human USL fibroblasts (hUSLFs). In the present study, 8-hydroxyguanosine (8-OHdG) and 4 hydroxynonenal (4-HNE), as oxidative biomarkers, were examined by immunohistochemistry to evaluate oxidative injury in USL sections in POP (n=20) and non-POP (n=20) groups. The primary cultured hUSLFs were treated with exogenous H2O2 to establish an original OS cell model, in which the expression levels of collagen, type 1, a1 (COL1A1), matrix metalloproteinase (MMP)-2, tissue inhibitor of metalloproteinase (TIMP)-2 and transforming growth factor (TGF)-ß1 were evaluated by western blot and reverse transcription-quantitative polymerase chain reaction analyses. The results showed that the expression levels of 8-OHdG and 4-HNE in the POP group were significantly higher, compared with those in the control group. Collagen metabolism was regulated by H2O2 exposure in a concentration-dependent manner, in which lower concentrations of H2O2 (0.1-0.2 mM) stimulated the anabolism of COL1A1, whereas a higher concentration (0.4 mM) promoted catabolism. The expression levels of MMP-2, TIMP-2 and TGF-ß1 exhibited corresponding changes with the OS levels. These results suggested that OS may be involved in the pathophysiology of POP by contributing to collagen metabolic disorder in a severity-dependent manner in hUSLFs, possibly through the regulation of MMPs, TIMPs and TGF-ß1 indirectly.
Neutrophil extracellular traps (NETs) are implicated in autoimmunity, but how they are generated and their roles in sterile inflammation remain unclear. Ribonucleoprotein immune complexes (RNP ICs), inducers of NETosis, require mitochondrial reactive oxygen species (ROS) for maximal NET stimulation. After RNP IC stimulation of neutrophils, mitochondria become hypopolarized and translocate to the cell surface. Extracellular release of oxidized mitochondrial DNA is proinflammatory in vitro, and when this DNA is injected into mice, it stimulates type I interferon (IFN) signaling through a pathway dependent on the DNA sensor STING. Mitochondrial ROS are also necessary for spontaneous NETosis of low-density granulocytes from individuals with systemic lupus erythematosus. This was also observed in individuals with chronic granulomatous disease, who lack NADPH oxidase activity but still develop autoimmunity and type I IFN signatures. Mitochondrial ROS inhibition in vivo reduces disease severity and type I IFN responses in a mouse model of lupus. Together, these findings highlight a role for mitochondria in the generation not only of NETs but also of pro-inflammatory oxidized mitochondrial DNA in autoimmune diseases.
Spinal muscular atrophy (SMA) is a genetic disorder characterized by loss of motor neurons in the spinal cord leading to muscle atrophy and death. Although motor neurons (MNs) are the most obviously affected cells in SMA, recent evidence suggest dysfunction in multiple cell types. Astrocytes are a crucial component of the motor circuit and are intimately involved with MN health and maintenance. We have previously shown that SMA astrocytes are altered both morphologically and functionally early in disease progression, though it is unclear what causes astrocytes to become reactive. Oxidative stress is a common feature among neurodegenerative diseases. Oxidative stress can both induce apoptosis in neurons and can cause astrocytes to become reactive, which are features observed in the SMA induced pluripotent stem cell (iPSC) cultures. Therefore, we asked if oxidative stress contributes to SMA astrocyte pathology. We examined mitochondrial bioenergetics, transcript and protein levels of oxidative and anti-oxidant factors, and reactive oxygen species (ROS) production and found little evidence of oxidative stress. We did observe a significant increase in endogenous catalase expression in SMA iPSCs. While catalase knockdown in SMA iPSCs increased ROS production above basal levels, levels of ROS remained lower than in controls, further arguing against robust oxidative stress in this system. Viral delivery of survival motor neuron (SMN) reversed astrocyte activation and restored catalase levels to normal, without changing mitochondrial respiration or expression of oxidative stress markers. Taken together, these data indicate that SMN deficiency induces astrocyte reactivity, but does not do so through an oxidative stress-mediated process.
Hyperglycemia can inhibit expression of the 8-oxoG-DNA glycosylase (OGG1) which is one of the key repair enzymes for DNA oxidative damage. The effect of hyperglycemia on OGG1 expression in response to local anesthetics-induced DNA damage is unknown. This study was designed to determine whether high glucose inhibits OGG1 expression and aggravates bupivacaine-induced DNA damage via reactive oxygen species (ROS). SH-SY5Y cells were cultured with or without 50 mM glucose for 8 days before they were treated with 1.5 mM bupivacaine for 24 h. OGG1 expression was measured by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot. ROS was estimated using the redox-sensitive fluorescent dye DCFH-DA. DNA damage was investigated with immunostaining for 8-oxodG and comet assays. OGG1 expression was inhibited in cells exposed to high glucose with concomitant increase in ROS production and more severe DNA damage as compared to control culture conditions, and these changes were further exacerbated by bupivacaine. Treatment with the antioxidant N-acetyl-L-cysteine (NAC) prevented high glucose and bupivacaine mediated increase in ROS production and restored functional expression of OGG1, which lead to attenuated high glucose-mediated exacerbation of bupivacaine neurotoxicity. Our findings indicate that subjects with diabetes may experience more detrimental effects following bupivacaine use.
Preclinical gene therapy strategies using recombinant adeno-associated virus (AAV) vectors in animal models of Duchenne muscular dystrophy have shown dramatic phenotype improvements, but long-lasting efficacy remains questionable. It is believed that in dystrophic muscles, transgene persistence is hampered, notably by the progressive loss of therapeutic vector genomes resulting from muscle fibers degeneration. Intracellular metabolic perturbations resulting from dystrophin deficiency could also be additional factors impacting on rAAV genomes and transgene mRNA molecular fate. In this study, we showed that rAAV genome loss is not the only cause of reduced transgene mRNA level and we assessed the contribution of transcriptional and post-transcriptional factors. We ruled out the implication of transgene silencing by epigenetic mechanisms and demonstrated that rAAV inhibition occurred mostly at the post-transcriptional level. Since Duchenne muscular dystrophy (DMD) physiopathology involves an elevated oxidative stress, we hypothesized that in dystrophic muscles, transgene mRNA could be damaged by oxidative stress. In the mouse and dog dystrophic models, we found that rAAV-derived mRNA oxidation was increased. Interestingly, when a high expression level of a therapeutic transgene is achieved, oxidation is less pronounced. These findings provide new insights into rAAV transductions in dystrophic muscles, which ultimately may help in the design of more effective clinical trials.
Isocitrate dehydrogenase-1 (Idh1) is an important metabolic enzyme that produces NADPH by converting isocitrate to a-ketoglutarate. Idh1 is known to reduce reactive oxygen species (ROS) induced in cells by treatment with lipopolysaccharide (LPS) in vitro. Here, we used Idh1-deficient knockout (Idh1 KO) mice to investigate the role of Idh1 in antioxidant defense in vivo. Idh1 KO mice showed heightened susceptibility to death induced by LPS and exhibited increased serum levels of inflammatory cytokines such as tumor necrosis factor-a and interleukin-6. The serum of LPS-injected Idh1 KO mice also contained elevated levels of AST, a marker of inflammatory liver damage. Furthermore, after LPS injection, livers of Idh1 KO mice showed histological evidence of elevated oxidative DNA damage compared with livers of wild-type (WT) mice. Idh1 KO livers showed a faster and more pronounced oxidative stress than WT livers. In line with that, Idh1 KO hepatocytes showed higher ROS levels and an increase in the NADP(+)/NADPH ratio when compared with hepatocytes isolated from WT mice. These results suggest that Idh1 has a physiological function in protecting cells from oxidative stress by regulating the intracellular NADP(+)/NADPH ratio. Our findings suggest that stimulation of Idh1 activity may be an effective therapeutic strategy for reducing oxidative stress during inflammatory responses, including the early stages of septic shock.
Controversy over the role of antioxidants in cancer has persisted for decades. Here, we demonstrate that synthesis of the antioxidant glutathione (GSH), driven by GCLM, is required for cancer initiation. Genetic loss of Gclm prevents a tumor's ability to drive malignant transformation. Intriguingly, these findings can be replicated using an inhibitor of GSH synthesis, but only if delivered prior to cancer onset, suggesting that at later stages of tumor progression GSH becomes dispensable potentially due to compensation from alternative antioxidant pathways. Remarkably, combined inhibition of GSH and thioredoxin antioxidant pathways leads to a synergistic cancer cell death in vitro and in vivo, demonstrating the importance of these two antioxidants to tumor progression and as potential targets for therapeutic intervention.
Sperm chromatin in mammals is packaged in different blocks associated to protamines (PDNA), histones (HDNA), or nuclear matrix proteins. Differential packaging has been related to early or late transcription and also to differential susceptibility to genotoxic damage. Genes located in the more accessible HDNA could be more susceptible to injuries than those located in PDNA, being potential biomarkers of paternal DNA damage. Fish sperm chromatin organization is much diversified, some species lacking protamines and some others totally depleted of histones. Analyzing genotoxic damage in a species homogeneously compacted with some sperm nuclear basic protein type, could help in deciphering the clues of differential susceptibility to damage. In the present study we analyzed in rainbow trout the differential susceptibility of nine genes to UV irradiation and H2O2 treatment. The absence of histones in the sperm nuclei was confirmed by Western blot. The chromatin fractionation in sensitive and resistant regions to PvuII (presumably HDNA-like and PDNA-like, respectively) revealed that the nine genes locate in the same resistant region. The number of lesions promoted was quantified using a qPCR approach. Location of 8-hydroxyguanosine (8-OHdG) was analyzed by immunocytochemistry and confocal microscopy. UV irradiation promoted similar number of lesions in all the analyzed genes and a homogenous distribution of 8-OHdG within the nuclei. 8-OHdG was located in the peripheral area of the nucleus after H2O2 treatment, which promoted a significantly higher number of lesions in developmental-related genes (8.76-10.95 lesions/10 kb) than in rDNA genes (1.05-1.67 lesions/10 kb). We showed for the first time, that differential susceptibility to damage is dependent on the genotoxic mechanism and relies on positional differences between genes. Sensitive genes were also analyzed in cryopreserved sperm showing a lower number of lesions than the previous treatments and a predominant peripheral distribution of oxidative damage (8-OHdG).
White matter lesions (WML) are common in brain aging and are associated with dementia. We aimed to investigate whether oxidative DNA damage and occur in WML and in apparently normal white matter in cases with lesions. Tissue from WML and control white matter from brains with lesions (controls lesional) and without lesions (controls non-lesional) were obtained, using post-mortem magnetic resonance imaging-guided sampling, from the Medical Research Council Cognitive Function and Ageing Study. Oxidative damage was assessed by immunohistochemistry to 8-hydroxy-2'-deoxoguanosine (8-OHdG) and Western blotting for malondialdehyde. DNA response was assessed by phosphorylated histone H2AX (?H2AX), p53, senescence markers and by quantitative Reverse transcription polymerase chain reaction (RT-PCR) panel for candidate DNA damage-associated genes. 8-OHdG was expressed in glia and endothelium, with increased expression in both WML and controls lesional compared with controls non-lesional (P < 0.001). ?H2Ax showed a similar, although attenuated difference among groups (P = 0.03). Expression of senescence-associated ß-galactosidase and p16 suggested induction of senescence mechanisms in glia. Oxidative DNA damage and a DNA damage response are features of WML pathogenesis and suggest candidate mechanisms for glial dysfunction. Their expression in apparently normal white matter in cases with WML suggests that white matter dysfunction is not restricted to lesions. The role of this field-effect lesion pathogenesis and cognitive impairment are areas to be defined.
Red/near-infrared irradiation therapy (R/NIR-IT) delivered by laser or light-emitting diode (LED) has improved functional outcomes in a range of CNS injuries. However, translation of R/NIR-IT to the clinic for treatment of neurotrauma has been hampered by lack of comparative information regarding the degree of penetration of the delivered irradiation to the injury site and the optimal treatment parameters for different CNS injuries. We compared the treatment efficacy of R/NIR-IT at 670 nm and 830 nm, provided by narrow-band LED arrays adjusted to produce equal irradiance, in four in vivo rat models of CNS injury: partial optic nerve transection, light-induced retinal degeneration, traumatic brain injury (TBI) and spinal cord injury (SCI). The number of photons of 670 nm or 830 nm light reaching the SCI injury site was 6.6% and 11.3% of emitted light respectively. Treatment of rats with 670 nm R/NIR-IT following partial optic nerve transection significantly increased the number of visual responses at 7 days after injury (P = 0.05); 830 nm R/NIR-IT was partially effective. 670 nm R/NIR-IT also significantly reduced reactive species and both 670 nm and 830 nm R/NIR-IT reduced hydroxynonenal immunoreactivity (P = 0.05) in this model. Pre-treatment of light-induced retinal degeneration with 670 nm R/NIR-IT significantly reduced the number of Tunel+ cells and 8-hydroxyguanosine immunoreactivity (P = 0.05); outcomes in 830 nm R/NIR-IT treated animals were not significantly different to controls. Treatment of fluid-percussion TBI with 670 nm or 830 nm R/NIR-IT did not result in improvements in motor or sensory function or lesion size at 7 days (P>0.05). Similarly, treatment of contusive SCI with 670 nm or 830 nm R/NIR-IT did not result in significant improvements in functional recovery or reduced cyst size at 28 days (P>0.05). Outcomes from this comparative study indicate that it will be necessary to optimise delivery devices, wavelength, intensity and duration of R/NIR-IT individually for different CNS injury types.
The intestinal stem cell fuels the highest rate of tissue turnover in the body and has been implicated in intestinal disease and cancer; understanding the regulatory mechanisms controlling intestinal stem cell physiology is of great importance. Here, we provide evidence that the transcription factor YY1 is essential for intestinal stem cell renewal. We observe that YY1 loss skews normal homeostatic cell turnover, with an increase in proliferating crypt cells and a decrease in their differentiated villous progeny. Increased crypt cell numbers come at the expense of Lgr5(+) stem cells. On YY1 deletion, Lgr5(+) cells accelerate their commitment to the differentiated population, exhibit increased levels of apoptosis, and fail to maintain stem cell renewal. Loss of Yy1 in the intestine is ultimately fatal. Mechanistically, YY1 seems to play a role in stem cell energy metabolism, with mitochondrial complex I genes bound directly by YY1 and their transcript levels decreasing on YY1 loss. These unappreciated YY1 functions broaden our understanding of metabolic regulation in intestinal stem cell homeostasis.
Ultraviolet (UV) radiation results in a significant loss in years of healthy life, approximately 1.5 million disability-adjusted life years (DALYs), and is associated with greater than 60,000 deaths annually worldwide that are attributed to melanoma and other skin cancers. Currently, there are no standardized biomarkers or assay panels to assess oxidative stress skin injury patterns in human skin exposed to ionizing radiation. Using biopsy specimens from chronic solar UV-exposed and UV-protected skin, we demonstrate that UV radiation-induced oxidative skin injury can be evaluated by an immunohistochemical panel that stains 8-hydroxydeoxyguanosine (8-OH-dG) to assess DNA adducts, 4-hydroxy-2-nonenal (HNE) to assess lipid peroxidation, and advanced glycation end products (AGEs) to assess protein damage. We believe this panel contains the necessary cellular biomarkers to evaluate topical agents, such as sunscreens and anti-oxidants that are designed to prevent oxidative skin damage and may reduce UV-associated skin aging, carcinogenesis, and inflammatory skin diseases. We envision that this panel will become an important tool for researchers developing topical agents to protect against UV radiation and other oxidants and ultimately lead to reductions in lost years of healthy life, DALYs, and annual deaths associated with UV radiation.
It has been proposed that the development of COPD is driven by premature aging/premature senescence of lung parenchyma cells. There are data suggesting that old mice develop a greater inflammatory and lower anti-oxidant response after cigarette smoke compared to young mice, but whether these differences actually translate into greater levels of disease is unknown. We exposed C57Bl/6 female mice to daily cigarette smoke for 6 months starting at age 3 months (Ayoung@) or age 12 months (Aold@), with air-exposed controls. There were no differences in measures of airspace size between the two control groups and cigarette smoke induced exactly the same amount of emphysema in young and old. The severity of smoke-induced small airway remodeling using various measures was identical in both groups. Smoke increased numbers of tissue macrophages and neutrophils and levels of 8-hydroxyguanosine, a marker of oxidant damage, but there were no differences between young and old. Gene expression studies using laser capture microdissected airways and parenchyma overall showed a trend to lower levels in older animals and a somewhat lesser response to cigarette smoke in both airways and parenchyma but the differences were usually not marked. Telomere length was greatest in young control mice and was decreased by both smoking and age. The senescence marker p21(Waf1) was equally upregulated by smoke in young and old, but p16(INK4a), another senescence marker, was not upregulated at all. We conclude, in this model, animal age does not affect the development of emphysema and small airway remodeling.
Cancer chromosomal instability (CIN) results in an increased rate of change of chromosome number and structure and generates intratumour heterogeneity. CIN is observed in most solid tumours and is associated with both poor prognosis and drug resistance. Understanding a mechanistic basis for CIN is therefore paramount. Here we find evidence for impaired replication fork progression and increased DNA replication stress in CIN(+) colorectal cancer (CRC) cells relative to CIN(-) CRC cells, with structural chromosome abnormalities precipitating chromosome missegregation in mitosis. We identify three new CIN-suppressor genes (PIGN (also known as MCD4), MEX3C (RKHD2) and ZNF516 (KIAA0222)) encoded on chromosome 18q that are subject to frequent copy number loss in CIN(+) CRC. Chromosome 18q loss was temporally associated with aneuploidy onset at the adenoma-carcinoma transition. CIN-suppressor gene silencing leads to DNA replication stress, structural chromosome abnormalities and chromosome missegregation. Supplementing cells with nucleosides, to alleviate replication-associated damage, reduces the frequency of chromosome segregation errors after CIN-suppressor gene silencing, and attenuates segregation errors and DNA damage in CIN(+) cells. These data implicate a central role for replication stress in the generation of structural and numerical CIN, which may inform new therapeutic approaches to limit intratumour heterogeneity.
Oral exposure to high concentrations of hexavalent chromium [Cr(VI)] induces intestinal redox changes, villus cytotoxicity, crypt hyperplasia, and intestinal tumors in mice. To assess the effects of Cr(VI) in a cell model relevant to the intestine, undifferentiated (proliferating) and differentiated (confluent) Caco-2 cells were treated with Cr(VI), hydrogen peroxide or rotenone for 2-24 hours. DNA damage was then assessed by nuclear staining intensity of 8-hydroxydeoxyguanosine (8-OHdG) and phosphorylated histone variant H2AX (?-H2AX) measured by high content analysis methods. In undifferentiated Caco-2, all three chemicals increased 8-OHdG and ?-H2AX staining at cytotoxic concentrations, whereas only 8-OHdG was elevated at non-cytotoxic concentrations at 24 hr. Differentiated Caco-2 were more resistant to cytotoxicity and DNA damage than undifferentiated cells, and there were no changes in apoptotic markers p53 or annexin-V. However, Cr(VI) induced a dose-dependent translocation of the unfolded protein response transcription factor ATF6 into the nucleus. Micronucleus (MN) formation was assessed in CHO-K1 and A549 cell lines. Cr(VI) increased MN frequency in CHO-K1 only at highly cytotoxic concentrations. Relative to the positive control Mitomycin-C, Cr(VI) only slightly increased MN frequency in A549 at mildly cytotoxic concentrations. The results demonstrate that Cr(VI) genotoxicity correlates with cytotoxic concentrations, and that H2AX phosphorylation occurs at higher concentrations than oxidative DNA damage in proliferating Caco-2 cells. The findings suggest that in vitro genotoxicity of Cr(VI) is primarily oxidative in nature at low concentrations. Implications for in vivo intestinal toxicity of Cr(VI) will be discussed.
Exposure to the anticonvulsant valproic acid (VPA) during the first trimester of pregnancy is associated with an increased risk of congenital malformations including heart defects, craniofacial abnormalities, skeletal and limb defects, and, most frequently, neural tube defects (NTDs). The mechanisms by which VPA induces teratogenic effects are not fully understood, although previous studies support a role for oxidative stress. To investigate the effects of VPA on early development, a whole-embryo culture model was used to evaluate the protective effects of antioxidants, measure intracellular reactive oxygen species (ROS) levels, and assess markers of oxidative damage and apoptosis. Furthermore, in vivo teratological evaluations of antioxidant protection were also completed. VPA (0.60 mM in embryo culture, 400 mg/kg in vivo) induced significant decreases in embryonic growth and increases in NTDs. Of the antioxidants tested, catalase provided partial protection against VPA-mediated reductions in morphological and developmental growth parameters in both whole-embryo culture and in vivo systems. VPA exposure resulted in an increase in ROS staining in the head region, as assessed by whole-mount staining with 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate. Markers of embryonic oxidative damage including 8-hydroxyguanosine, 4-hydroxynonenal adducts, and 3-nitrotyrosine were not affected by VPA treatment. Increased ROS levels were correlated with increased staining for apoptotic markers, as assessed by Western blotting and immunohistochemistry. Addition of catalase to the medium attenuated VPA-induced increases in ROS formation and apoptosis. These studies identify regions of the embryo susceptible to ROS and apoptosis induced by VPA, thus establishing a possible molecular pathway by which VPA exerts teratogenicity.
Mitochondrial dysfunction plays an important role in mediating ischemic brain damage. Immp2l is an inner mitochondrial membrane peptidase that processes mitochondrial protein cytochrome c1 (Cyc1). Homozygous mutation of Immp2l (Immp2l(Tg(Tyr)979Ove) or Immp2l(-/-)) elevates mitochondrial membrane potential, increases superoxide (O(2)(-)) production in the brain and impairs fertility. The objectives of this study are to explore the effects of heterozygous mutation of Immp2l (Immp2l(+/-)) on ischemic outcome and to determine the influence of Immp2l deficiency on brain mitochondria after stroke. Male Immp2l(+/-) and wild-type (WT) mice were subjected to 1-h focal cerebral ischemia. Their brains were harvested after 5 and 24-h of reperfusion. The results showed that infarct volume and DNA oxidative damage significantly increased in the Immp2l(+/-) mice. There were no obvious cerebral vasculature abnormalities between the two types of mice viewed by Indian ink perfusion. The increased damage in Immp2l(+/-) mice was associated with early increase in O(2)(-) production. Mitochondrial respiratory rate, total mitochondrial respiratory capacity and mitochondrial respiratory complex activities were decreased at 5-h of recirculation in Immp2l(+/-) mice compared to WT mice. Our results suggest that Immp2l deficiency increases ischemic brain damage by enhancing O(2)(-) production and damaging mitochondrial functional performance.
An immunoaffinity column is described that facilitates the analysis of oxidative damage products of DNA and RNA in urine, blood plasma, and medium isolated from cultures of Escherichia coli. In intact animals, lesions (adducts) excised from DNA are transported from the cell through the circulation and excreted in urine. In bacteria, DNA adducts are excreted directly into the medium. In either case, the adducts can be assayed as a measure of oxidative damage to DNA. A monoclonal antibody that recognizes 8-oxo-7,8-dihydro-2'-deoxyguanosine (oxo8dG;8-hydroxy-2'-deoxyguanosine), a bio-marker of oxidative damage to DNA, has been isolated, and its substrate binding properties have been characterized. The relative binding affinities of this monoclonal antibody for oxo8dG, unmodified nucleosides, or derivatives of Gua made it suitable for the preparation of immunoaffinity columns that greatly facilitate the isolation of oxo8dG, 8-oxo-7,8-dihydroguanine, and 8-oxo-7,8-dihydroguanosine from various biological fluids. Quantitative analysis of these adducts in urine of rats fed a nucleic acid-free diet and in the medium from cultures of E. coli suggests that oxo8-7,8-dihydroguanine is the principal repair product from oxo8-dG in DNA of both eukaryotes and prokaryotes. The results support our previous estimate of about 10(5) oxidative lesions to DNA being formed and excised in an average rat cell per day.
Background & aims: Nonalcoholic steatohepatitis (NASH) is associated with cirrhosis and hepatocellular carcinoma. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) play key roles in the development of the disease. However, the therapeutic target of NASH has not been fully defined and new treatments are needed. We investigated the protective effects of the antioxidant indole-derived NecroX-7 in a NASH mouse model using leptin-deficient ob/ob and methionine- and choline-deficient (MCD) diet-fed ob/ob mice.
Methods: Six-week-old male mice were divided into three groups: ob/+ mice, ob/ob mice treated with vehicle and ob/ob mice treated daily with NecroX-7 (20 mg/kg) for 4 weeks. To study the effects of NecroX-7 in a fibrosis model, NASH was induced by feeding ob/ob mice an MCD diet. The effects of NecroX-7 on NASH progression were evaluated using biochemical, histological and molecular markers.
Results: NecroX-7-treated ob/ob mice had a marked decrease in serum aspartate aminotransferase and alanine transaminase compared with vehicle-treated controls. Interestingly, hepatic steatosis and lipid peroxidation were significantly improved by NecroX-7 treatment. NecroX-7 inhibited tert-butylhydroperoxide- and H2 O2 -induced mitochondrial ROS/RNS in primary hepatocytes and attenuated mitochondrial dysfunction in vitro and in vivo. Furthermore, NecroX-7-treated mice exhibited fewer infiltrating macrophages and reduced hepatic tumour necrosis factor-alpha expression. Hepatic fibrosis in MCD-fed ob/ob mice was significantly decreased by NecroX-7 treatment.
Conclusions: NecroX-7 treatment improved hepatic steatosis and fibrosis in murine NASH models. These effects occurred through the suppression of whole-cell ROS/RNS and inflammatory responses and suggest that NecroX-7 has a potential therapeutic benefit in steatohepatitis.
Background: Hemodynamic insults at arterial bifurcations are believed to play a critical role in initiating intracranial aneurysms. Recent studies in a rabbit model indicate that aneurysmal damage initiates under specific wall shear stress conditions when smooth muscle cells (SMCs) become pro-inflammatory and produce matrix metalloproteinases (MMPs). The mechanisms leading to SMC activation and MMP production during hemodynamic aneurysm initiation are unknown. The goal is to determine if nitric oxide and/or superoxide induce SMC changes, MMP production and aneurysmal remodeling following hemodynamic insult.
Methods: Bilateral common carotid artery ligation was performed on rabbits (n = 19, plus 5 sham operations) to induce aneurysmal damage at the basilar terminus. Ligated animals were treated with the nitric oxide synthase (NOS) inhibitor LNAME (n = 7) or the superoxide scavenger TEMPOL (n = 5) and compared to untreated animals (n = 7). Aneurysm development was assessed histologically 5 days after ligation. Changes in NOS isoforms, peroxynitrite, reactive oxygen species (ROS), MMP-2, MMP-9, and smooth muscle a-actin were analyzed by immunohistochemistry.
Results: LNAME attenuated ligation-induced IEL loss, media thinning and bulge formation. In untreated animals, immunofluorescence showed increased endothelial NOS (eNOS) after ligation, but no change in inducible or neuronal NOS. Furthermore, during aneurysm initiation ROS increased in the media, but not the intima, and there was no change in peroxynitrite. In LNAME-treated animals, ROS production did not change. Together, this suggests that eNOS is important for aneurysm initiation but not by producing superoxide. TEMPOL treatment reduced aneurysm development, indicating that the increased medial superoxide is also necessary for aneurysm initiation. LNAME and TEMPOL treatment in ligated animals restored a-actin and decreased MMPs, suggesting that eNOS and superoxide both lead to SMC de-differentiation and MMP production.
Conclusion: Aneurysm-inducing hemodynamics lead to increased eNOS and superoxide, which both affect SMC phenotype, increasing MMP production and aneurysmal damage.
Back ground: Overt and subtle iron overload cause diabetes by lowering insulin production and promoting insulin resistance. Via divalent metal transporters pancreatic beta cells take up non-transferrin-bound iron which by catalyzing Fenton reaction can cause oxidative stress. Due to their strict dependence on mitochondrial glucose metabolism and limited antioxidant capacity, beta cells are exquisitely vulnerable to oxidative stress and hence catalytically active iron. Intravenous (IV) iron preparations are routinely used in the management of anemia in patients with end stage renal disease. This has led to an epidemic of iron overload in this population. This study explored the effect of pharmacologically-relevant concentrations of a commonly used IV iron preparation on the beta cells in isolated pancreatic islets.
Methods: Isolated rat pancreatic islets were incubated for 24 hours in culture media containing vehicle or pharmacologically-relevant concentration of ferric sucrose and examined for the extent of cell death and oxidative stress.
Results: Exposure to iron sucrose resulted in a concentration-dependent oxidative stress and pancreatic islet cell death predominantly affecting beta cells.
Conclusions: At pharmacologically-relevant concentrations a commonly used IV iron preparation causes oxidative stress and beta cell death. These findings suggest that indiscriminate use of IV iron may impair insulin production capacity in ESRD patients the majority of whom have Type-2 diabetes.
Background: Mitochondrial dysfunction is one of the major events responsible for activation of neuronal cell death pathways during cerebral ischemia. Trace element selenium has been shown to protect neurons in various diseases conditions. Present study is conducted to demonstrate that selenium preserves mitochondrial functional performance, activates mitochondrial biogenesis and prevents hypoxic/ischemic cell damage.
Results: The study conducted on HT22 cells exposed to glutamate or hypoxia and mice subjected to 60-min focal cerebral ischemia revealed that selenium (100 nM) pretreatment (24 h) significantly attenuated cell death induced by either glutamate toxicity or hypoxia. The protective effects were associated with reduction of glutamate and hypoxia-induced ROS production and alleviation of hypoxia-induced suppression of mitochondrial respiratory complex activities. The animal studies demonstrated that selenite pretreatment (0.2 mg/kg i.p. once a day for 7 days) ameliorated cerebral infarct volume and reduced DNA oxidation. Furthermore, selenite increased protein levels of peroxisome proliferator-activated receptor-? coactivator 1alpha (PGC-1a) and nuclear respiratory factor 1 (NRF1), two key nuclear factors that regulate mitochondrial biogenesis. Finally, selenite normalized the ischemia-induced activation of Beclin 1 and microtubule-associated protein 1 light chain 3-II (LC3-II), markers for autophagy.
Conclusions: These results suggest that selenium protects neurons against hypoxic/ischemic damage by reducing oxidative stress, restoring mitochondrial functional activities and stimulating mitochondrial biogenesis.