Unconjugated
Cajal bodies (CBs) are major sub-nuclear structures in most eucaryotic cells. In human adenovirus 5 (Ad5) infection, CBs are reorganized into microfoci in the late phase of infection. Here we show that many CB protein components (p80-coilin, SMN-1, and WRAP53) remained stable throughout most of the infectious cycle of Ad type 5 (Ad5) in human A549 epithelial cells, even when CBs were reorganized into microfoci. Reduction of p80-coilin expression by RNA interference resulted in significant reductions in the levels of early (E1A, E2A-DBP), intermediate (pIX and IVa2), and late (L1-IIIa, L2-penton base, L3-hexon, L4-100K, and L5-fiber) proteins in Ad5-infected A549 cells. Depletion of p80-coilin did not significantly alter the total cellular levels of the corresponding Ad cytoplasmic mRNAs (with the exception of E1A 12S and 13S and pIX mRNA) or the production of the Ad5 pre-mRNAs tested (E1A, E2A-DBP, IVa2, or late pre-mRNAs containing the tripartite leader). However, the ratio of viral cytoplasmic to nuclear-spliced Ad RNAs was reduced in p80-coilin-depleted, Ad5-infected cells compared to control-infected cells. Immunofluorescent staining of Ad5-infected cells revealed co-localization of p80-coilin with areas of immunoreactivity defined by a polyclonal antibody that recognized the L4-22K and L4-33K proteins in a fraction of microfoci. Immunoprecipitation analysis showed that only the L4-22K protein formed a stable complex with p80-coilin in Ad5-infected cells and in cells co-transfected with plasmids encoding p80-coilin and either the L4-22K or L4-33K protein. p80-coilin therefore plays an important role in Ad replication by complex formation with L4-22K and facilitating nuclear export of Ad mRNAs. IMPORTANCE The architecture of sub-nuclear structures of eucaryotic cells is often changed during the infectious cycle of many animal and plant viruses. Cajal bodies (CBs) form a major sub-nuclear structure whose functions may include the regulation of cellular RNA metabolism. During the lifecycle of human adenovirus 5 (Ad5), CBs are reorganized from their spherical-like structure into smaller clusters termed microfoci. The mechanism of this reorganization and its significance for virus replication has yet to be established. Here we show that the major CB protein, p80-coilin, facilitates the nuclear export of Ad5 transcripts. Depletion of p80-coilin by RNA interference led to lowered levels of viral proteins and infectious virus. p80-coilin was found to form a complex with the viral L4-22K protein in Ad5-infected cells and in some reorganized microfoci. These findings assign a new role for p80-coilin as a potential regulator of infection by a human DNA virus.
Ischemic stroke results in severe brain damage and remains one of the leading causes of death and disability worldwide. Effective neuroprotective therapies are needed to reduce brain damage resulting from ischemic stroke. Mitochondria are crucial for cellular energy production and homeostasis. Modulation of mitochondrial function mediates neuroprotection against ischemic brain damage. Dynamin-related protein 1 (Drp1) and parkin play a key role in regulating mitochondrial dynamics. They are potential therapeutic targets for neuroprotection in ischemic stroke. Protective effects of parkin-Drp1 pathway on mitochondria were assessed in a cellular ischemia-reperfusion injury model. Mouse neuroblastoma Neuro2a (N2a) cells were subjected to oxygen-glucose deprivation/reperfusion (OGDR) insult. OGDR induces mitochondrial fragmentation. The expression of Drp1 protein is increased after OGDR insult, while the parkin protein level is decreased. The altered protein level of Drp1 after OGDR injury is mediated by parkin through ubiquitin proteasome system (UPS). Drp1 depletion protects against OGDR induced mitochondrial damage and apoptosis. Meanwhile, parkin overexpression protects against OGDR induced apoptosis and mitochondrial dysfunction, which is attenuated by increased expression of Drp1. Our data demonstrate that parkin protects against OGDR insult through promoting degradation of Drp1. This neuroprotective potential of parkin-Drp1 pathway against OGDR insult will pave the way for developing novel neuroprotective agents for cerebral ischemia-reperfusion related disorders.