FITC
Excitation: 490nm, Emission: 525nm
Specific interactions between envelope and core proteins govern the membrane assembly of most enveloped viruses. Despite this, mixed infections lead to pseudotyping, the association of the viral cores of one virus with the envelopes of another. How does this occur? We show here that the detergent-insoluble lipid rafts of the plasma membrane function as a natural meeting point for the transmembrane and core components of a phylogenetically diverse collection of enveloped viruses. As a result, viral particles preferentially incorporate both the envelope components of other viruses as well as the extra- and intracellular constituents of host cell lipid rafts, including gangliosides, glycosyl phosphatidylinositol-anchored surface proteins, and intracellular signal transduction molecules. Pharmacological disruption of lipid rafts interferes with virus production.
We have assessed the functional effect of CD99 engagement on resting human peripheral blood (PB) T cells. CD99, as detected by the mAb 3B2/TA8, is constitutively expressed on all PB T cells and becomes further up-regulated upon cellular activation. In this study we demonstrate that cross-linking of the CD99 molecule with the agonistic mAb 3B2/TA8 cooperates with suboptimal TCR/CD3 signals, but not with phorbol ester, ionomycin, or CD28 mAb stimulation, to induce proliferation of resting PB T cells. Comparable stimulatory effects were observed with the CD99 mAb 12E7. Characterization of the signaling pathways involved revealed that CD99 engagement leads to the elevation of intracellular Ca2+, which is dependent on the cell surface expression of the TCR/CD3 complex. No CD99 mAb-induced calcium mobilization was observed on TCR/CD3-modulated or TCR/CD3-negative T cells. To examine the impact of CD99 stimulation on subsequent cytokine production by T cells, we cross-linked CD99 molecules in the presence of a suboptimal TCR/CD3 trigger followed by determination of intracellular cytokine levels. Significantly, T cell lines as well as Th1 and Th0 clones synthesized TNF-alpha and IFN-gamma after this treatment. In contrast, Th2 clones were unable to produce IL-4 or IFN-gamma when stimulated in a similar fashion. We conclude that CD99 is a receptor that mediates TCR/CD3-dependent activation of resting PB T cells and specifically induces Th1-type cytokine production in polyclonally activated T cell lines, Th1 and Th0 clones.