PE
Excitation: 565nm, Emission: 578nm
Background. One of the most plentiful sources for MSCs is the bone marrow; however, it is unknown whether MSC yield differs among different bone marrow sites. In this study, we quantified cellular yield and evaluated resident MSC population from five bone marrow sites in the porcine model. In addition, we assessed the feasibility of a commercially available platelet concentrator (Magellan® MAR01™ Arteriocyte Medical Systems, Hopkinton, MA) as a bedside stem cell concentration device. Methods. Analyses of bone marrow aspirate (BMA) and concentrated bone marrow aspirate (cBMA) included bone marrow volume, platelet and nucleated cell yield, colony-forming unit fibroblast (CFU-F) number, flow cytometry, and assessment of differentiation potential. Results. Following processing, the concentration of platelets and nucleated cells significantly increased but was not significantly different between sites. The iliac crest had significantly less bone marrow volume; however, it yielded significantly more CFUs compared to the other bone marrow sites. Culture-expanded cells from all tested sites expressed high levels of MSC surface markers and demonstrated adipogenic and osteogenic differentiation potential. Conclusions. All anatomical bone marrow sites contained MSCs, but the iliac crest was the most abundant source of MSCs. Additionally, the Magellan can function effectively as a bedside stem cell concentrator.
Chromosomal translocation that results in fusion of the genes encoding RNA-binding protein EWS and transcription factor FLI1 (EWS-FLI1) is pathognomonic for Ewing sarcoma. EWS-FLI1 alters gene expression through mechanisms that are not completely understood. We performed RNA sequencing (RNAseq) analysis on primary pediatric human mesenchymal progenitor cells (pMPCs) expressing EWS-FLI1 in order to identify gene targets of this oncoprotein. We determined that long noncoding RNA-277 (Ewing sarcoma-associated transcript 1 [EWSAT1]) is upregulated by EWS-FLI1 in pMPCs. Inhibition of EWSAT1 expression diminished the ability of Ewing sarcoma cell lines to proliferate and form colonies in soft agar, whereas EWSAT1 inhibition had no effect on other cell types tested. Expression of EWS-FLI1 and EWSAT1 repressed gene expression, and a substantial fraction of targets that were repressed by EWS-FLI1 were also repressed by EWSAT1. Analysis of RNAseq data from primary human Ewing sarcoma further supported a role for EWSAT1 in mediating gene repression. We identified heterogeneous nuclear ribonucleoprotein (HNRNPK) as an RNA-binding protein that interacts with EWSAT1 and found a marked overlap in HNRNPK-repressed genes and those repressed by EWS-FLI1 and EWSAT1, suggesting that HNRNPK participates in EWSAT1-mediated gene repression. Together, our data reveal that EWSAT1 is a downstream target of EWS-FLI1 that facilitates the development of Ewing sarcoma via the repression of target genes.