Unconjugated
Kidney podocytes and their slit diaphragms form the final barrier to urinary protein loss. This explains why podocyte injury is typically associated with nephrotic syndrome. The present study uncovered an unanticipated novel role for costimulatory molecule B7-1 in podocytes as an inducible modifier of glomerular permselectivity. B7-1 in podocytes was found in genetic, drug-induced, immune-mediated, and bacterial toxin-induced experimental kidney diseases with nephrotic syndrome. The clinical significance of our results is underscored by the observation that podocyte expression of B7-1 correlated with the severity of human lupus nephritis. In vivo, exposure to low-dose LPS rapidly upregulates B7-1 in podocytes of WT and SCID mice, leading to nephrotic-range proteinuria. Mice lacking B7-1 are protected from LPS-induced nephrotic syndrome, suggesting a link between podocyte B7-1 expression and proteinuria. LPS signaling through toll-like receptor-4 reorganized the podocyte actin cytoskeleton in vitro, and activation of B7-1 in cultured podocytes led to reorganization of vital slit diaphragm proteins. In summary, upregulation of B7-1 in podocytes may contribute to the pathogenesis of proteinuria by disrupting the glomerular filter and provides a novel molecular target to tackle proteinuric kidney diseases. Our findings suggest a novel function for B7-1 in danger signaling by nonimmune cells.
Cytotoxic T-lymphocyte antigen 4 (CTLA4) is a well-studied T cell costimulatory receptor that is known to inhibit T cell activation. In this study, the relationship between strength of the first signal and costimulatory interactions on primary mouse CD4(+) T cells was investigated. CTLA4-CD80/CD86 interactions differentially modulate T cell cycling based on the mode of CD3 signal: Activation with plate-bound (pb) anti-CD3 generates a strong signal compared with a weak signal with soluble (sol) anti-CD3, resulting in approximately sevenfold higher amounts of interleukin (IL)-2 and an increase in cell cycling. Activation of T cells with sol anti-CD3 (weak signal) together with CTLA4-CD80/CD86 blockade lowers IL-2 production and cell cycling, demonstrating an enhancing role for these interactions. Conversely, blockade of CTLA4-CD80/CD86 interactions on T cells activated with pb anti-CD3 (strong signal) increases proliferation, which is consistent with CTLA4 as a negative regulator. Also, coculture of T cells with Chinese hamster ovary cells expressing CD80 or CD86 demonstrates that the strength of the primary signal plays an important role. It is important that modulation of IL-2 amounts leads to distinct alterations in the functional effects of CTLA4-CD80/CD86 interactions. On increasing IL-2 amounts, activation of T cells stimulated with sol anti-CD3 (weak signal) and CTLA4-CD80/CD86 blockade is greater compared with control. Concurrently, neutralization of IL-2 greatly reduces activation of T cells stimulated with pb anti-CD3 (strong signal) and CTLA4-CD80/CD86 blockade compared with control. These results underscore the importance of strength of first signal, CTLA4-CD80/CD86 interactions, and IL-2 amounts in modulating primary CD4(+) T cell responses.