PE
Excitation: 565nm, Emission: 578nm
Systemic lupus erythematosus (SLE) is a prototypic autoimmune disease characterized by circulating autoantibodies and the formation of immune complexes. In these responses, the selecting self-antigens likely derive from the remains of dead and dying cells, as well as from disturbances in clearance. During cell death/activation, microparticles (MPs) can be released to the circulation. Previous MP studies in SLE have been limited in size and differ regarding numbers and phenotypes. Therefore, to characterize MPs more completely, we investigated 280 SLE patients and 280 individually matched controls. MPs were measured with flow cytometry and phenotyped according to phosphatidylserine expression (PS+/PS-), cellular origin and inflammatory markers. MPs, regardless of phenotype, are 2-10 times more abundant in SLE blood compared to controls. PS- MPs predominated in SLE, but not in controls (66% vs. 42%). Selectively in SLE, PS- MPs were more numerous in females and smokers. MP numbers decreased with declining renal function, but no clear association with disease activity was observed. The striking abundance of MPs, especially PS- MPs, suggests a generalized disturbance in SLE. MPs may be regarded as "liquid biopsies" to assess the production and clearance of dead, dying and activated cells, i.e. pivotal events for SLE pathogenesis.
Shock is frequently accompanied by thrombocytopenia. To investigate the pathogenic role of platelets in shock, we examined the in vivo effects of monoclonal antibodies (MoAbs) against mouse platelet membrane proteins. Injection of the platelet-specific MoAb MWReg30 to the fibrinogen receptor (gpIIb/IIIa) rendered mice severely hypothermic within minutes. Isotype-matched control antibodies, even if they also recognized platelet surface antigens, did not induce comparable signs. MWReg30 induced early signs of acute lung injury with increased cellularity in the lung interstitium and rapid engorgement of alveolar septal vessels. Despite this in vivo activity, MWReg30 inhibited rather than stimulated platelet aggregation in vitro. MWReg30-binding to platelets led to phosphorylation of gpIIIa, but did not induce morphological signs of platelet activation. The MWReg30-induced reaction was abolished after treatment with MoAbs 2.4G2 to FcgammaRII/III and was absent in FcgammaRIII-deficient mice, clearly demonstrating the requirement for FcgammaRIII on involved leukocytes. Simultaneous administration of tumor necrosis factor exacerbated, whereas a tolerizing regimen of tumor necrosis factor or bacterial lipopolysaccharide completely prevented the reaction. These data suggest that platelet surface-deposited MWReg30-immune complexes lead to an acute Fc-mediated reaction with pulmonary congestion and life-threatening potential that could serve as an in vivo model of acute lung injury.